精选优质文档-倾情为你奉上第三章一维定态问题3.1)设粒子处在二维无限深势阱中,求粒子的能量本征值和本征波函数。如 ,能级的简并度如何?解:能量的本征值和本征函数为若,则 这时,若,则能级不简并;若,则能级一般是二度简并的(有偶然简并情况,如与)3.2)设粒子限制在矩形匣子中运动,即求粒子的能量本征值和本征波函数。如,讨论能级的简并度。解:能量本征值和本征波函数为,当时,时,能级不简并;三者中有二者相等,而第三者不等时,能级一般为三重简并的。三者皆不相等时,能级一般为6度简并的。如 3.3)设粒子处在一维无限深方势阱中,证明处于定态的粒子讨论的情况,并于经典力学计算结果相比较。证:设粒子处于第n个本征态,其本征函数. (1) (2)在经典情况下,在区间粒子除与阱壁碰撞(设碰撞时间不计,且为弹性碰撞,即粒子碰撞后仅运动方向改变,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。