第九讲数形结合思想【中考热点分析】 数形结合思想是数学中重要的思想方法,它根据数学问题中的条件和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙的结合起来,并充分利用这种结合,探求解决问题的思路,使问题得以解决的思考方法。几何图形的形象直观,便于理解;代数方法的一般性,解题过程的操作性强,便于把握。【经典考题讲练】例1.(2015衢州)如图,已知直线分别交x轴、y轴于点A、B,P是抛物线的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线于点Q,则当PQ=BQ时,a的值是 例2.(2014广州)已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线()过点A、B,顶点为C点P(m,n)(n0)为抛物线上一点(1)求抛物线的解析式与顶点C的坐标(2)当APB为钝角时,求m的取值范围(3)若,当APB为直角时,将该抛物线向左或向右平移t()个单位,点P、C移动后对应的点分别记为、,是否存在t,使得首尾依次连接A、B、所构成的多边形的周长最短