例1 路灯离地面高度为H,一个身高为h 的人,在灯下水平路面上以匀速度步行。如图3-4所示。求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小。解: 建立如右下图所示的坐标, 时刻头顶影子的坐标为,设头顶影子的坐标为,则由图中看出有则有所以有;例2 如右图所示,跨过滑轮C 的绳子,一端挂有重物B,另一端A被人拉着沿水平方向匀速运动,其速率 。A离地高度保持为h,h =1.5m。运动开始时,重物放在地面B0处,此时绳C在铅直位置绷紧,滑轮离地高度H = 10m,滑轮半径忽略不计,求: (1) 重物B上升的运动方程; (2) 重物B在时刻的速率和加速度; (3) 重物B到达C处所需的时间。 解:(1)物体在B0处时,滑轮左边绳长为l0 = H-h,当重物的位移为y时,右边绳长为因绳长为 由上式可得重物的运动方程为(SI)(2)重物B的速度和加速度为 (3)由知 当时,。此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加