精选优质文档-倾情为你奉上 圆锥曲线典型问题问题1:求圆锥曲线的标准方程、离心率、准线方程等.利用待定系数法求出相应的a,b,p等.例1设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为4,求此椭圆方程、离心率、准线方程及准线间的距离.思路分析:设所求椭圆方程为或.根据题意列出关于a,b,c方程组,从而求出a,b,c的值,再求离心率、准线方程及准线间的距离.解:设椭圆的方程为或,则,解之得:,b=c4.则所求的椭圆的方程为或,离心率;准线方程,两准线的距离为16.点评:充分认识椭圆中参数a,b,c,e的意义及相互关系,在求标准方程时,已知条件常与这些参数有关.演变1:如图,已知P1OP2的面积为,P为线段P1P2的一个三等分点,求以直线OP1、OP2为渐近线且过点P的离心率为的双曲线方程 点拨与提示 本题考查待定系数法求双曲线的方程,利用点P在曲线上和P1OP2的面积建立关于参数a、b的两个方程,从而求出a、b的值