温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-10105180.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(对于多元函数泰勒展开(共2页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上 电动力学中的泰勒展开问题 物理系同学们在学习电动力学和量子力学的过程中会碰到对类似展开的问题,初学者可能会对此类函数的展开感到困惑,对此,自己课下之余整理了一下,希望能对同学们的学习带来帮助。以下讨论主要针对的是电动力学中的极矩问题,源点与场点统一规定为用和来表示。对于多元函数泰勒展开,例如,有 (1) 其中展开中心为.对于函数,它是的函数,展开时需要指出其展开中心是源点还是场点.1 若在处展开,则 = (2)其中, 下同.由于是在为小量的情况下展开的,为了计算方便,(2)式的可取为原点,即=0,此时,(2)式便成为电势多级展开中常见的形式,即 (3)2 若在处展开,则同理可得= (4) 对在处展开时, 此时是变化的, 算符可换为对源点的算符. 即,=, 代入(4) 式得, (5) 同理,若=0,(5)式
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。