温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-10430270.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(高等数学微分中值定理应用举例(共13页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上微分中值定理应用举例单调性与极值1.函数在上,比较的大小.解:在上满足拉氏中值定理条件,存在,使得.由于,所以单调增加,而,所以,即.2.函数在上,比较的大小.解:由于,所以单调增加,而,所以在上,同上题讨论有3.在内,判断在内的符号.解:,所以在内为奇函数,为偶函数,为奇函数,在内,所以在内.4.已知函数在区间内具有二阶导数,且严格递增, ,则:A.在内均有;B.在内均有;C. 在内均有,在内均有;D. 在内均有,在内均有.解:令,则,0减0增极小值选择B.5 .设处处可导,则A.必;B. 必C. 必;D. 必解:选择D (A,C的反例,B的反例)6.设函数在上有界且可导,则A. 必 ;B. 存在,必;C. 必; D. 存在,必;解:选择A (B,C,D的反例)7. 设函数在的邻域内连续,且,则在处A. 不可导; B.可导,且; C.取极大值; D.取极小值解:所以所
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。