温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-10951103.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(牛顿莱布尼茨公式(共20页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上装订线教学过程1、复习旧知识,引入课题(1)复习:定积分的概念及几何意义 原函数的概念 导数的定义(2)课题引入:从上节的例题和习题中可以看到利用定积分的定义计算定积分的值是十分繁琐且易出错的,有时甚至无法计算。下面将通过对定积分与原函数关系的讨论,到出一种计算定积分的简便有效的方法牛顿-莱布尼茨公式。2、讲解新课2.1 定积分与不定积分的联系若质点以速度作变速直线运动,由定积分的定义,质点从时刻到所经过的路程为。另一方面,质点从某时刻到时刻 经过的路程记为,则,于是注意到路程函数是速度函数的原函数,因此把定积分与不定积分联系起来了,这就是下面要介绍的牛顿-莱布尼茨公式。2.2牛顿-莱布尼茨公式定理:若函数在上连续,且存在原函数,即,则在上可积,且装订线 (1)则上
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。