温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-10978450.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(考研数学幂级数逐项积分和求导后的收敛性分析(共3页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上考研数学幂级数逐项积分和求导后的收敛性分析 来源:文都教育在考研数学中,高等数学中的无穷级数是数学一和数学三的必考内容,每年都考,而在无穷级数这一部分,幂级数的求和是其中最重要的一部分。幂级数的求和有多种方法,其中最常用的一种方法是对幂级数进行逐项积分或求导,然后利用一些已知幂级数的和函数求出原幂级数的和。为了使各位考生对这种方法有更深的理解,下面文都网校的蔡老师对其做些分析总结,供大家参考。1、 幂级数逐项积分和求导后的收敛性分析定理1:幂级数的和函数在其收敛域上可积,并有逐项积分公式,逐项积分后所得到的幂级数和原级数有相同的收敛半径。推论1:若逐项积分后的幂级数的收敛域为,则 .证明:由定理1知,逐项积分后的幂级数在上每一个点都收敛,因此.定理2:幂级数的和函数在其收敛区间内可导,且有逐项求导公式,逐项求导后所得到的幂级数和原级数有相同的收敛半径。推论2:若逐项求导后的幂级数的收敛域为,原级数的收敛域为,则 .证明:因为逐项求导后的幂级数再逐项积分后得,它与原幂级数仅相差一个常数,因此其收敛域为,由推论1
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。