ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:846.50KB ,
资源ID:1215824      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-1215824.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(近三年全国二试题分单元归纳.DOC)为本站会员(国***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

近三年全国二试题分单元归纳.DOC

1、近三年全国二试题分单元归纳第一单元 集合一. 选择题(1)2004(文理)已知集合 M x|x24 ,N x|x22x30 ,则集合 MN(A)x| x2 (B)x|x 3 (C)x|1x2 (D)x|2x3 ()2005(理,文科 10) 已知集合 ,2380x,则 为260NxMN(A) 或 (B ) 或42x37x42x7x(C) 或 (D ) 或3(1)2006(理) 已知集合 Mx|x3 ,N x|log 2x1 ,则 MN(A) (B) x|0 x3(C) x|1x3 (D) x|2x 3(2)2006(文) 已知集合 ,则 ( )2|,|log(A) (B) (C) (D)|03

2、x|1|23x第二单元 函数与导数一. 选择题(6)2004(理)函数 ye x 的图象(A)与 ye x 的图象关于 y 轴对称 (B)与 ye x 的图象关于坐标原点对称(C)与 ye x 的图象关于 y 轴对称 (D)与 ye x 的图象关于坐标原点对称(10)2004(理)函数 yx cosxsin x 在下面哪个区间内是增函数(A)( , ) (B)( ,2 ) (C )( , ) (D )(2 ,323235)(2)2004(文)函数 y (x5)的反函数是51(A)y 5(x 0) (B)yx 5(xR)(C)y 5(x 0) (D )y x5(xR)(3)2004(文)曲线 y

3、x 33x 21 在点(1 ,1)处的切线方程为(A)y3x4 (B)y 3x 2 (C)y 4x 3 (D)y 4x5()2005(文理)函数 的反函数是32(0)(A) (B)(1)3(1)(C) (D)3yx 0yx(6)2006(理)函数 ylnx1(x0) 的反函数为(A)y e x1 (xR) (B)ye x1 (xR)(C)y e x1 (x1) (D)ye x1 (x1)(8)2006(理)函数 yf( x)的图像与函数 g(x)log 2x(x 0)的图像关于原点对称,则f(x)的表达式为(A) f(x) x0 (B) f(x)log 2(x) x01log 2x(C) f(

4、x)log 2 x x0 (D) f(x)log 2(x ) x0(4)2006(文)如果函数 的图像与函数 的图像关于坐标原点对称,yf3y则 的表达式为( )yf(A) (B) (C) (D)23x23yx2yx23yx(8)2006(文)已知函数 ,则 的反函数为( )()ln1(0)f)f(A) (B)1()xyeR1()xyeR(C) (D)(11)2006(文)过点(1,0)作抛物线 的切线,则其中一条切线为( )21yx(A) (B ) (C) (D)2xy30x010xy二. 解答题(22)2004(理)(本小题满分 14 分)已知函数 f (x)ln(1x )x,g (x)x

5、 ln x (1)求函数 f(x)的最大值;(2)设 0ab,证明:0g( a)g(b) 2g( )(ba)ln2(21)2004(文)(本题满分 12 分)若函数 f (x) x3 ax2(a1)x1 在区间(1,4) 内为减函数,在区间(6,)1上为增函数,试求实数 a 的取值范围 奎 屯王 新 敞新 疆(22)2005(理) (本小题满分 12 分)已知 ,函数 0axexf)2()()当 x 为何值时,f(x)取得最小值?证明你的结论;()设 f(x)在 -1,1上是单调函数,求 a 的取值范围(21)2005(文) (本小题满分 14 分)设 为实数,函数 ()求 的极值;a32()

6、fxx()fx()当 在什么范围内取值时,曲线 与 轴仅有一个交点()yf(20).2006(理)设函数 f(x) (x1) ln (x1) ,若对所有的 x0,都有 f(x)ax 成立,求实数 a 的取值范围(21)2006(文) (本小题满分为分)设 ,函数 若 的解集为R2().fxa()0fx,求实数 的取值范围。|13,BxABa第三单元 数列与极限一选择题:(2)2004(理) 542lim21xn(A) (B)1 (C) (D)5241(11)2005(理)如果 , , 为各项都大于零的等差数列,公差 ,则1a28a0d(A) (B) (C) + + (D ) =18451451

7、8a451a845()2005(文)如果数列 是等差数列,即n(A) (B) 1a845a1845(C) (D) a(11)2006(理)设 Sn 是等差数列a n的前 n 项和,若 ,则 S 3S6 13S 6S12( A) ( B) ( C) ( D)310 13 18 19(6)2006(文)已知等差数列 中, ,则前 10 项的和 ( )na247,5a10S(A)100 (B)210 (C)380 (D)400三解答题(19)2004(理)(本小题满分 12 分)数列a n的前 n 项和记为 Sn,已知 a11,a n1 Sn(n1,2,3,) 证明:()数列 是等比数列; ()S

8、n1 4a nnS(17)2004(文)(本题满分 12 分)已知等差数列a n,a 29,a 5 21 奎 屯王 新 敞新 疆()求a n的通项公式; ()令 bn ,求数列 bn的前 n 项和 Sn 奎 屯王 新 敞新 疆a18 2005(理)已知 是各项均为正数的等差数列, 、 、 成等差n 1lga24lga数列又 , ()证明 为等比数列;21nba,3n()如果无穷等比数列 各项的和 ,求数列 的首项 和公差 nb13Sna1d(注:无穷数列各项的和即当 时数列前项和的极限)(19)2005(文)已知 是各项均为正数的等差数列, 、 、 成等差数na1lg24lga列又 , 21n

9、b,3()证明 为等比数列;()如果数列 前项的和等于 ,求数列 的首项 和公差 nb724na1d(22)2006(理)设数列a n的前 n 项和为 Sn,且方程 x2a nxa n0 有一根为Sn1,n1,2,3,()求 a1,a 2; () a n的通项公式(18)2006(文)设等比数列 的前 n 项和为 ,nS481,7,?nSa求 通 项 公 式第四单元 三角函数一选择题(5)2004(文理)已知函数 ytan(2 x)的图象过点( ,0),则 可以是12(A) (B) (C) (D)66 12(11)2004(文理)函数 ysin 4xcos 2x 的最小正周期为(A) (B)

10、(C) (D)24 ()2005(文理)函数 的最小正周期是()sincof(A) (B) (C) (D)2()2005(文理)已知函数 在 内是减函数,则tayx(,)2(A) (B ) (C) (D ) ()2005(理)锐角三角形的内角 、 满足 ,则有AB1tantansiBA(A) (B)sin2cos0sico0(C) (D )i 2(2)2006(理,文科(3) )函数 ysin2 xcos2x 的最小正周期是(A)2 (B )4 (C ) (D)4 2(10) 2006(文理)若 f (sinx)3cos2x,则 f (cosx)(A)3cos2 x (B)3sin2x (C)

11、3cos2x (D )3sin2 x二填空题(14)2005(理)设 为第四象限的角,若 ,则 _asin15atan2(14)2006(理)已知ABC 的三个内角 A、B、C 成等差数列,且 AB1,BC 4,则边 BC 上的中线 AD 的长为 三解答题(17) 2004(理,文科 18)(本小题满分 12 分)已知锐角三角形 ABC 中,sin(AB) ,sin(AB ) 5351()求证:tanA2tan B; ()设 AB3,求 AB 边上的高(17)2005(文)已知 为第二象限的角, , 为第一象限的角,sin求 的值5cos13tan(2)(17)2006(文)在 ,求2545,

12、10,cosABCAC中 ,(1) (2)若点?D是 的 中 点 , 求 中 线 D的 长 度 。第五单元 不等式一选择题(12)2006(理)函数 f(x) 的最小值为19i 1|x n|(A)190 (B)171 (C )90 (D)45三解答题172005(理) 设函数 ,求使 的 取值范围1()2xf()2fxx第六单元 向量一选择题(9)2004(理)已知平面上直线 的方向向量 ,点 O(0,0)和 A(1,-2)在 上l )53,4(e l的射影分别是 O1 和 A1,则 ,其中 1(A) (B) (C)2 (D)255(9)2004(文)已知向量 、 满足:| |1,| |2,

13、| |2,则| |ababaab(A)1 (B) (C) (D)256(10)2005(理,文科(11) )点 在平面上作匀速直线运动,速度向量P(即点 的运动方向与 相同,且每秒移动的距离为 个单位) 设(4,3)vvv开始时点 的坐标为 (,) ,则秒后点 的坐标为PP(A) (-2,4) (B) (-30,25) (C ) (10,-5 ) ( D) (5,-10)(1)2006(文)已知向量 (4,2) ,向量 ( ,3) ,且 / ,则 ( )abxabx(A)9 (B)6 (C)5 (D)3三解答题(17)2006(理)已知向量 a(sin,1),b(1,cos ), 2 2()若

14、 ab,求 ;()求ab的最大值第七单元 解析几何一选择题(4)2004(文理)已知圆 C 与圆(x1) 2y 21 关于直线 yx 对称,则圆 C 的方程为(A)(x1) 2y 21 (B )x 2y 21 (C)x 2(y1) 21 (D)x 2( y 1)21(8)2004(理)在坐标平面内,与点 A(1,2) 距离为 1,且与点 B(3,1)距离为 2 的直线共有(A)1 条 (B)2 条 C)3 条 (D)4 条(8)2004(文)已知点 A(1,2) ,B(3,1),则线段 AB 的垂直平分线的方程为(A)4x2y5 (B)4x 2y5 (C)x 2y 5 (D)x 2 y5()2

15、005(理)已知双曲线 的焦点为 、 ,点 在双曲线上且2163xy1FM轴,则 到直线 的距离为1MFx12FM(A) (B) (C) ( D)365566556()2005(理)已知点 , , 设 的平分线 与(3,1)A(0,)B(3,0)CBACE相交于 ,那么有 ,其中 等于BCEE(A) (B) (C ) (D )213()2005(文)抛物线 上一点 纵坐标为,则点 与抛物线焦点的距离为4xyAA(A) (B) (C) (D)()2005(文)双曲线 的渐近线方程是2149(A) (B) (C) (D)3yxyx32yx94yx(5)2006(文理)已知ABC 的顶点 B、C 在

16、椭圆 y 21 上,顶点 A 是椭圆的一个焦x3点,且椭圆的另外一个焦点在 BC 边上,则ABC 的周长是(A)2 (B) 6 (C)4 (D)123 3(9)2006(文理)双曲线 的一条渐近线方程为 y x,则双曲线的离心率为xa yb 1 43(A) (B) (C) (D)53 43 54 32二填空题(14)2004(文理)设 x,y 满足约束条件则 z3x2y 的最大值是 x120(15)2004(文理)设中心在原点的椭圆与双曲线 2x22y 21 有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 (13)2005(理,文科 14)圆心为(1,2)且与直线 相切的圆的方程为57

17、0_(15)2006(文理)过点(1, )的直线 l 将圆(x2) 2 y24 分成两段弧,当劣弧所对2的圆心角最小时,直线 l 的斜率 k 三解答题(21)2004(理,文科 22,14 分)(本小题满分 12 分)给定抛物线 C:y 24x,F 是 C 的焦点,过点 F 的直线 l 与 C 相交于 A、B 两点()设 l 的斜率为 1,求 与 夹角的大小;OAB()设 ,若 4,9 ,求 l 在 y 轴上截距的变化范围B(21) 2005(理,文科 22,14 分) (本小题满分 14 分)P、Q、M、N 四点都在椭圆上,F 为椭圆在 y 轴正半轴上的焦点已知 与 共线, 与12yx FM

18、F共线,且 求四边形 PMQN 的面积的最小值和最大值N0MP(21)2006(理,文科 22,12 分) (本小题满分 14 分)已知抛物线 x24y 的焦点为 F,A、B 是抛物线上的两动点,且 (0) 过 A、B 两点分别作抛物线的切线,设其交点为 AF FB()证明 为定值;FMAB()设ABM 的面积为 S,写出 Sf ()的表达式,并求 S 的最小值第八单元 立体几何一选择题(7)2004(理,文科 10)已知球 O 的半径为 1,A、B、C 三点都在球面上,且每两点间的球面距离为 ,则球心 O 到平面 ABC 的距离为2(A) ( B) (C) (D)313326(6)2004(文)正四棱锥的侧棱长与底面边长都是 1,则侧棱与底面所成的角为(A)75 (B)60 (C)45 (D)30()2005(文理)正方体 中, 、 、 分别是 、 、1APQRAB

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。