温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-14223697.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(第七章 线性变换 习题答案.doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
第七章 线性变换3在中,证明:解题提示直接根据变换的定义验证即可证明 任取,则有,于是 4设是线性变换,如果,证明: 解题提示利用数学归纳法进行证明证明 当时,由于,可得,因此结论成立假设当时结论成立,即那么,当时,有,即对结论也成立从而,根据数学归纳法原理,对一切结论都成立特别提醒由可知,结论对也成立5证明:可逆映射是双射解题提示只需要说明可逆映射既是单射又是满射即可证明 设是线性空间上的一个可逆变换对于任意的,如果,那么,用作用左右两边,得到,因此是单射;另外,对于任意的,存在,使得,即是满射于是是双射特别提醒由此结论可知线性空间上的可逆映射是到自身的同构 6设是线性空间的一组基,是上的线性变换,证明可逆当且仅当线性无关证法1若是可逆的线性变换,设,即而根据上一题结论可知是单射,故必有,又由于是线性无关的,因此从而线性无关反之,若是线性无关的,那么也是的一组基于是,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。