温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-14720236.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(北京高考导数大题分类.doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
导数大题分类一、含参数单调区间的求解步骤: 确定定义域(易错点) 求导函数 对进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理. 中的最高次系数是否为0,为0时求出单调区间. 例1:,则要首先讨论情况 最高次系数不为0,讨论参数取某范围的值时,若,则在定义域内单调递增;若,则在定义域内单调递减. 例2:,则 = ,显然时,此时的单调区间为. 最高次系数不为0,且参数取某范围的值时,不会出现或者的情况 求出=0的根,(一般为两个),判断两个根是否都在定义域内.如果只有一根在定义域内,那么单调区间只有两段. 若两根都在定义域内且一根为常数,一根含参数.则通过比较两根大小分三种情况讨论单调区间,即. 例3:若,则, 解方程得 时,只有在定义域内. 时,比较两根要分三种情况: 用所得的根将定义域分成几个不同的子区间,讨论在每个子区间内的正负,求得
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。