温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-15299860.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(定积分的应用.doc)为本站会员(99****p)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
定积分的应用 微积分学是微分学和积分学的统称,它的创立,被誉为“人类精神的最高胜利”。在数学史上,它的发展为现代数学做出了不朽的功绩。恩格斯曾经指出:微积分是变量数学最重要的部分,是数学的一个重要的分支,它实现带科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具。凡是复杂图形的研究,化学反映过程的分析,物理方面的应用,以及弹道气象的计算,人造卫星轨迹的计算,运动状态的分析等等,都要用得到微积分。正是由于微积分的广泛的应用,才使得我们人类在数学科学技术经济等方面得到了长足的发展,解决了许多的困难。以下将讲述一下定积分在数学经济工程医学物理方面的中的一些应用。1 定积分的概念的提出1.1图1-1a bOy=f(x)xy问题的提出 曲边梯形的面积(如图1)所谓曲边梯形,是指由直线、(),轴及连续曲线()所围成的图形。其中轴上区间称为底边,曲线称为曲边。不妨假定,下面来求曲边梯形的面积。由于图1-2a=x0 x1 x2 xi-1
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。