ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:1.21MB ,
资源ID:2164681      下载积分:15 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-2164681.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教版高中数学必修4知识点总结.doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

人教版高中数学必修4知识点总结.doc

1、环球雅思- 1 -PvxyAOMT 高中数学必修 4 知识点总结第一章 三角函数正 角 :按 逆 时 针 方 向 旋 转 形 成 的 角1、 任 意 角 负 角 按 顺 时 针 方 向 旋 转 形 成 的 角零 角 :不 作 任 何 旋 转 形 成 的 角2、角 的顶点与原点重合,角的始边与 轴的非负半轴重合,终边落在第几象限,则称 为第几象限x 角第一象限角的集合为 3603609,kkk第二象限角的集合为 918第三象限角的集合为 18270,kkk第四象限角的集合为 3602736终边在 轴上的角的集合为x,k终边在 轴上的角的集合为y1890k终边在坐标轴上的角的集合为 ,3、与角 终

2、边相同的角的集合为36,kk4、长度等于半径长的弧所对的圆心角叫做 弧度15、半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是 rl lr6、弧度制与角度制的换算公式: , , 236018057.37、若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则 ,为 弧 度 制 rlCSlr, 2Crl21Slr8、设 是一个任意大小的角, 的终边上任意一点 的坐标是 ,它与原点的距离是,xy,则 , , 20rxysinyrcosxrtan09、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正10、三角函数线: , , sist

3、A环球雅思- 2 -11、角三角函数的基本关系: ;221sincos1222incos,1sinsin2tacoita,ta 12、函数的诱导公式:, , 1sisikco2cosktn2tankk, , 2nna, , 3sisicsstt, , 4ocoanan口诀:函数名称不变,符号看象限, , 5sincs2si26sicos2sin2口诀:正弦与余弦互换,符号看象限13、 的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数sinyx的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变) ,得到函数sinyx 1的图象;再将函数 的图象上所有点的纵坐标伸长(缩

4、短)到原来的sinyx倍(横坐标不变) ,得到函数 的图象AA数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变) ,得到函数sinyx 1的图象;再将函数 的图象上所有点向左(右)平移 个单位长度,得到函数isinyx的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的sinyxi倍(横坐标不变) ,得到函数 的图象AsnyxA14、函数 的性质:si0,yx振幅: ;周期: ;频率: ;相位: ;初相: 212fx函数 ,当 时,取得最小值为 ;当 时,取得最大值为 ,则sinyxA1xminy2maxy, , mai12main2y212xx环球雅思- 3 -15、正

5、弦函数、余弦函数和正切函数的图象与性质:sinyxcosyxtanyx图象定义域 RR,2xk值域 1,1,R最值当 2xk时, ;当maxy2xk时,min1y当 时, 2xk;当may时, kmin1y既无最大值也无最小值周期性22奇偶性奇函数 偶函数 奇函数单调性在2,2k上是增函数;在 32,2k上是减函数在 上是增,2kk函数;在 上是减函数k在 ,2k上是增函数对称性对称中心,0k对称中心 对称中心函 数性质环球雅思- 4 -对称轴 2xk,02kk对称轴 x,02k无对称轴第二章 平面向量16、向量:既有大小,又有方向的量 数量:只有大小,没有方向的量有向线段的三要素:起点、方向

6、、长度 零向量:长度为 的向量0单位向量:长度等于 个单位的向量1平行向量(共线向量):方向相同或相反的非零向量零向量与任一向量平行相等向量:长度相等且方向相同的向量17、向量加法运算:三角形法则的特点:首尾相连平行四边形法则的特点:共起点三角形不等式:abab运算性质:交换律: ;a结合律: ; cc0a坐标运算:设 , ,1,axy2,bxy则 12b18、向量减法运算:三角形法则的特点:共起点,连终点,方向指向被减向量坐标运算:设 , ,1,axy2,bxy则 12b设 、 两点的坐标分别为 , ,则 A1,xy2,12,xyA19、向量数乘运算:实数 与向量 的积是一个向量的运算叫做向

7、量的数乘,记作 a a ;当 时, 的方向与 的方向相同;当 时, 的方向与 的方向相反;当 时,000a运算律: ; ; aaab b a C A aC环球雅思- 5 -坐标运算:设 ,则 ,axy,axy20、向量共线定理:向量 与 共线,当且仅当有唯一一个实数 ,使 0bba设 , ,其中 ,则当且仅当 时,向量 、 共线1,xy2,bxy1210xy021、平面向量基本定理:如果 、 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 ,1e2 a有且只有一对实数 、 ,使 (不共线的向量 、 作为这一平面内所有向量的一组基122ae1e2底)22、分点坐标公式:设点 是线段

8、上的一点, 、 的坐标分别是 , ,当12121,xy2,时,点 的坐标是 (当12 ,xy时 , 就 为 中 点 公 式 。 )23、平面向量的数量积: 零向量与任一向量的数量积为 cos0,180abab 0性质:设 和 都是非零向量,则 当 与 同向时, ;当 与abababa反向时, ; 或 2 运算律: ; ; abcc坐标运算:设两个非零向量 , ,则 1,axy2,bxy12abxy若 ,则 ,或 设 , ,则,xy221,2,bxy120ab设 、 都是非零向量, , , 是 与 的夹角,则1,axy2,bxyab122cosabx第三章 三角恒等变换24、两角和与差的正弦、余

9、弦和正切公式: ; ;coscsosincoscossin ; ;inicinic ( ) ;tata1nttata1tan环球雅思- 6 - ( ) tantan1ttantan1tan25、二倍角的正弦、余弦和正切公式: si2icos 222 )cos(icosicossii 222conc1n升幂公式 2si,s1降幂公式 , 2ocs2coi 2tant126、(后两个不用判断符号,更加好用)27、合一变形 把两个三角函数的和或差化为“一个三角函数,一个角,一次方 ”的 形式。 ,其中 BxAy)sin(2sincossinAAtanA28、三角变换是运算化简的过程中运用较多的变换,

10、提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能常用的数学思想方法技巧如下:(1 )角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: 是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍; 24224 ;问: ; ;30563051ooo 1sin12cos ; ;)( )4(24 ;等等)(2 (2 )函数名称变换:三角变形中,常常需要变函数名称为同名函数。如在三角函数中正余弦是基础,通常化切为弦,变异名为同名。(3 )常数代换:在

11、三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1 ”的代换变形有:oo45tan90sicttancossin22 (4 )幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。常 半 角 公 式 ins1sico12ta 2co;cos: 2tan1 cos;2tan1 i: 2万 能 公 式 环球雅思- 7 -用降幂公式有: ; 。降幂并非绝对,有时需要升幂,如对无理式常用升幂化为有理式,常用升幂公式有: ; ;cos1(5 )公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。如: ; ;_tan _tan1; ; ;ttt; ;an2 2an1;ooo 40t2tan340tt= ;csi= ;(其中 nba tan;); ;cos1 cos1(6 )三角函数式的化简运算通常从:“角、名、形、幂 ”四方面入手;基本规则是:见切化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理,特殊值与特殊角的三角函数互化。如: ;)10tan3(50sinoo。 cta

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。