ImageVerifierCode 换一换
格式:DOC , 页数:62 ,大小:4.06MB ,
资源ID:2262312      下载积分:15 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-2262312.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(浙江省专升本历年真题卷.doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

浙江省专升本历年真题卷.doc

1、12005 年浙江省普通高校“专升本”联考高等数学(一) 试卷一、填空题1函数 的连续区间是 。xexy)1(sin22 。4limx3 (1) 轴在空间中的直线方程是 。(2)过原点且与 轴垂直的平面方程是 。x4设函数 ,当 时,函数 在点1 ,b)(1)2)1(xaexfx _,ba)(xf处连续。1x5设参数方程 ,2sinco3ryx(1)当 是常数, 是参数时,则 。rdxy(2)当 是常数, 是参数时,则 。 r二选择题1设函数 在 上连续可导, ,且 ,则当( )时,)(xfyb, a),(bac0)(cf在 处取得极大值。)(xfc(A)当 时, ,当 时, ,0)(xfxx

2、(B)当 时, ,当 时, , )(f(C)当 时, ,当 时, ,xafbc0(D)当 时, ,当 时, .c)( f2设函数 在点 处可导,则)(fy0x( ) 。hfh23lim0 ).(5 ),(4),( ),( 000 xfDxfCBxfA3设函数 ,则积分 ( ) 。 , x,22ef 1fd.)(1)( 0 ,1)( DCBA25设级数 和级数 都发散,则级数 是( ).1na1nb1)(nnba(A)发散 (B)条件收敛 (C)绝对收敛 (D)可能发散或者可能收敛三计算题1求函数 的导数。xy)1(22. 求函数 在区间(1,2)中的极大值,极小值。3x3. 求函数 的 n 阶

3、导数 。xef2)(ndxf4计算积分 。02135计算积分 。dxe6计算积分 。1208.把函数 展开成 的幂级数,并求出它的收敛区间。xy1x9.求二阶微分方程 的通解。yd210.设 是两个向量,且 求 的值,其中 表示向量 的ba, ,3ba22baa模。 四综合题1计算积分 ,其中 是整数。021sinsi2mxdx n,2已知函数 ,cbaf 34)(其中常数 满足 ,dcb, 0(1)证明函数 在(0,1)内至少有一个根,)(xf(2)当 时,证明函数 在(0,1)内只有一个根。ac832)(xf2005 年高数(一)答案(A)卷1填空题姓名:_准考证号:_报考学校 报考专业:

4、 -密封线-31连续区间是 ),1(0),(23 (1) 或者 ,或者 (其中 是参数) , (2) 0zy01zyx0,zytxt0x4 ,ba5 (1) , (2) .yr2x3二选择题题 号 1 2 3 4 5答 案 B D B D三计算题。1解 :令 , (3)ln(l2xy分)则 (7 分)xx )1(l1) 222 2解: ,驻点为 (2 分))43(3 xy 34,021(法一) ,6, (极大值) , (5 分)04)( 1)(y, (极小值). (7 分)3y2753(法二) x1 (1,0) 0 ) ,(342) ,(342y正 0 负 0 正-2 递增 1 递减 275递

5、增(5 分)当 时, (极大值) ,当 时, (极小值) (7 分)0x1y34x275y3解:利用莱布尼兹公式(7 分)xn enxdxf )1(24解: (3 分) 0101012 2)2(3 dxxdxd4 (7 分) 34ln12l0x5解: (3 分)de2dxex2C (其中 C 是任意常数) (7 分))1ln(2xx6解: (3 分)102dex dxeex102 )2()(2 2 + =10)(x31x 。 (7 分)ee38:解:(2 分)211xxy )21()()(23 nnx , (5 分) 01)nnx收敛区间为(-1, 3). (7 分)9.解:特征方程为 ,特征

6、值为 (二重根) , 021齐次方程 的通解是 ,其中 是任意常数.ydxxecy)(221,c(3 分)的特解是 , (6 分)ydx2x所以微分方程的通解是 ,其中 是任意常数 xecy)(22121,c(7 分)10解: (3 分)22ba )()( baba . (7 分)6)(四综合题: 1解:(法一) (4 分) 021sin2sinxdmxd dxmnxn)cos()1(cos0 (10 分) 0 0 ,21)cos(21 ,ii ndxn(法二)当 时m5 ( 4 分) 021sin21sinxdmxd dxmnxn)cos()1(cos0 (7 分)0i)( 当 时 021s

7、in21sinxdxd 0 002 21)2cos(1sin xdnxd(10 分)2证明:(1)考虑函数 , (2 分)xcbxaxF234)(在 0,1上连续,在(0,1)内可导, , )(xF )1(F由罗尔定理知,存在 ,使得 ,即,0)(,就是 ,f)(f 023d所以函数 在(0,1)内至少有一个根. (7 分))((2) cbxax62 因为 ,所以 ,cb832 0)83(1296)(14)(2 acbacba保持定号, 函数 在(0,1)内只有一个根 . (10 分))(fff2006 年浙江省普通高校“专升本”联考高等数学(一) 试卷1、填空题1 。lim235nn2函数

8、的间断点是 。2268()(5xf3若 在 处连续,则 。1(, 0), xfxA A4设 ,则 。2ln()ydyx5 。3 221)cosix8微分方程 的通解 。2()xydye二选择题1 函数 的定义域为 ,则函数 的定义域( ) 。()fx0,11()()fxfA4,5B6,5C4,D0,1姓名:_准考证号:_报考学校 报考专业: -密封线-62 当 时,与 不是等价无穷小量的是( ) 。0xxA2sinB2sinC3tanxDsinx3设 ,其中 ,则下面结论中正确( ) 。0()()xFftd2,01()fx A31,() 2xxB3,01() 2xFC31,0()2FxD3,(

9、),12x4曲线 与 轴所围图形的面积可表示为( ) 。(1),()yx A 20xdB 1 21()()xxdxC 0D 2(1)xdx5设 为非零向量,且 ,则必有( ) 。,ababABabCD三计算题1计算 。123lim()6xx2设 ,求 。coslni(l)ydyx3设函数 ,求 。2itxe4计算不定积分 。21sincodx75计算定积分 。 10xde6求微分方程 满足 的特解。232xye0,10xxdy7求过直线 ,且垂直于已知平面 的平面方程。102xzy 235z8将函数 展开成 的幂级数,并指出收敛半径。2()ln3)fx10当 为何值时,抛物线 与三直线 所围成

10、的图形面积最小,a2y,1,0ay求将此图形绕 轴旋转一周所得到的几何体的体积。x四综合题1 (本题 8 分)设函数 在 上连续,且 ,证明方程:()ft0,1()1fx在 内有且仅有一实根。 x02()ftd2 (本题 7 分)证明:若 ,则 。0,mna()()mnmnxaa3 (本题 5 分)设 是连续函数,求证积分()fx。 20sin()(co)4Idff 2006 年浙江省普通高校“专升本”联考高等数学(一) 试卷(A 卷)答案一填空题1 。lim235nn2函数 的间断点是 。2268()(5xf3x3若 在 处连续,则1, 0(), fxAx 1A4 。设 ,则 。2ln)yx

11、22ln(1)dyx姓名:_准考证号:_报考学校 报考专业: -密封线-85 3 22(1)cosinxd8微分方程 的通解为 ,其中 为任意常数。2xyye2ln()xeC二选择题1、C 2、D 3、D 4、C 5、B三计算题1计算 。12lim()6xx解: = 分123li()xx631 ( )(2li()xx 3 又因为 分6 3li()xxe5 分1lim 2x 6 所以 = 。 分3li()6xx3e 7 2设 ,求 。coslni(l)ydyx解; 分1()sin(l)cos(ln)dx x4 = 分csl 7 3设函数 ,求 。2ointxeydyx解: 2 分22csicst

12、tdt 4 分iotte 7 分2 2(csincs)(sinco)iitydtttxt 4计算不定积分 .21sincodx解: 3 分22 ssicix 9= 7 分221cotansincosdxxCx 5计算定积分 。 0xe解: 3 分 1 1200xxd = 5 分 120()xde = 。 7 分 10arctnarct4e 6求微分方程 满足 的特解。232xdyx001,xxdy解:微分方程 对应的特征方程为2xed230(1)20rr特征根为 1 分12, 而 ,所以 为单根, 2 分r 对应的齐次方程的通解为 3 分21xxYCe 非齐次方程的通解为 代入原方程得 4 分

13、*y 有通解 5 分21xxxyee 有 00,xxd12120,CC有解 7 分2ye 7求过直线 ,且垂直于已知平面 的平面方程。3102xz 2350xyz解:通过直线 的平面束方程为30yxz即21(232)0xyz3 分()(1x 10要求与平面 垂直,则必须2350xyz1(3)()(12)6 分40 所求平面方程为 7 分850xyz 8将函数 展开成 的幂级数,并指出收敛半径。2()ln3)f x解: 2 分1l(1ln(2)xx = 3 分l2()x =1100ln()2nnnx= 6 分10l2()()nnx 收敛半径 7 分1R 10当 为何值时,抛物线 与三直线 所围成的图形面积最小,a2y,1,0ay求将此图形绕 轴旋转一周所得到的几何体的体积。x解:设所围面积为 ()Sa2 分312()axd 21Sa令 3()0 分,所以 为最小的面积 4()2Sa1()2S 分7 分111222 450-08xVydxx 四;综合题1设函数 在 上连续,且 ,证明方程()ft,()f在 内有且仅有一实根。 x021d(0,

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。