ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:632.50KB ,
资源ID:3073782      下载积分:15 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3073782.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(初中数学函数部分.doc)为本站会员(11****ws)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

初中数学函数部分.doc

1、1,平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x 轴和 y 轴上的点,不属于任何象限。1、各象限内点的坐标的特征点 P(x,y)在第一象限 0,yx点 P(x,y)在第二象限 点 P(x,y)在第三象限 ,点 P(x,y)在第四象限 yx1

2、常量和变量在某变化过程中可以取不同数值的量,叫做变量在某变化过程中保持同一数值的量或数,叫常量或常数2函数设在一个变化过程中有两个变量 x 与 y,如果对于 x 在某一范围的每一个值,y 都有唯一的值与它对应,那么就说 x是自变量,y 是 x 的函数3自变量的取值范围(1)整式:自变量取一切实数(2)分式:分母不为零(3)偶次方根:被开方数为非负数(4)零指数与负整数指数幂:底数不为零4函数值对于自变量在取值范围内的一个确定的值,如当 xa 时,函数有唯一确定的对应值,这个对应值,叫做 xa 时的函数值 简单说:就是 X 与 y 的对应值5函数的表示法(1)解析法;(2)列表法;(3) 图象法

3、6函数的图象把自变量 x 的一个值和函数 y 的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象由函数解析式画函数图象的步骤:(1)写出函数解析式及自变量的取值范围;(2)列表:列表给出自变量与函数的一些对应值;(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,如果 (k,b 是常数,k 0) ,那么 y 叫做 x 的一次函数。xy特别地,当一次函数 中的 b 为 0 时, (k 为常数,k 0) 。这时

4、,y 叫做 x 的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数 的图像是经过点(0,b)的直线;正比例函数 的图像是经过原点(0,0)的直线。kxy kxyk 的符号 b 的符号 函数图像 图像特征b0y0 x 图像经过一、二、三象限,y 随 x 的增大而增大。k0b0y0 x图像经过一、二、四象限,y 随 x 的增大而减小K0 时,图像经过第一、三象限,y 随 x 的增大而增大;(2)当 k0 时,y 随 x 的增大而增大(2)当 k0 k0 时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随 x 的增大而减小。x 的

5、取值范围是 x 0,y 的取值范围是 y 0;当 k0 a时,y 随 x 的增大而增大,简记左减ab2右增;(1)抛物线开口向下,并向下无限延伸;(2)对称轴是 x= ,顶点坐标是ab2( , ) ;c4(3)在对称轴的左侧,即当 x 时,y 随 x 的增大而减小,简ab2记左增右减;(4)抛物线有最低点,当 x= 时,y 有最ab2小值, cy4最 小 值(4)抛物线有最高点,当 x= 时,y 有最ab2大值, cy4最 大 值八、二次函数的图象与各项系数之间的关系1. 二次项系数 a二次函数 中, 作为二次项系数,显然 2yxbca0a 当 时,抛物线开口向上, 的值越大,开口越小,反之

6、的值越小,开口越0大; 当 时,抛物线开口向下, 的值越小,开口越小,反之 的值越大,开口越a大总结起来, 决定了抛物线开口的大小和方向, 的正负决定开口方向, 的大小决aa定开口的大小2. 一次项系数 b在二次项系数 确定的前提下, 决定了抛物线的对称轴ab 在 的前提下,0当 时, ,即抛物线的对称轴在 轴左侧;02y当 时, ,即抛物线的对称轴就是 轴;ba当 时, ,即抛物线对称轴在 轴的右侧002y 在 的前提下,结论刚好与上述相反,即a当 时, ,即抛物线的对称轴在 轴右侧;ba当 时, ,即抛物线的对称轴就是 轴;002y当 时, ,即抛物线对称轴在 轴的左侧ba总结起来,在 确

7、定的前提下, 决定了抛物线对称轴的位置b的符号的判定:对称轴 在 轴左边则 ,在 轴的右侧则 ,aax2y0aby0ab概括的说就是“左同右异”总结:3. 常数项 c 当 时,抛物线与 轴的交点在 轴上方,即抛物线与 轴交点的纵坐标为正;0yxy 当 时,抛物线与 轴的交点为坐标原点,即抛物线与 轴交点的纵坐标为 ; 0 当 时,抛物线与 轴的交点在 轴下方,即抛物线与 轴交点的纵坐标为0cyxy负总结起来, 决定了抛物线与 轴交点的位置cy总之,只要 都确定,那么这条抛物线就是唯一确定的ab,二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析

8、式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与 轴的两个交点的横坐标,一般选用两根式;x4. 已知抛物线上纵坐标相同的两点,常选用顶点式十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与 轴交点情况):x一元二次方程 是二次函数 当函数值 时的特殊情况.20axbc2yabc0y图象与 轴的交点个数: 当 时,图象与 轴交于两点 ,其中的24x120AxB, , , 12()x是一元二次方程 的两根这两点间的距离12

9、x, 20abca. 2214AB 当 时,图象与 轴只有一个交点; 0x 当 时,图象与 轴没有交点.当 时,图象落在 轴的上方,无论 为任何实数,都有 ;1ax0y当 时,图象落在 轴的下方,无论 为任何实数,都有 20x 2. 抛物线 的图象与 轴一定相交,交点坐标为 , ; 2yaxbcy(0)c3. 二次函数常用解题方法总结: 求二次函数的图象与 轴的交点坐标,需转化为一元二次方程;x 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; 根据图象的位置判断二次函数 中 , , 的符号,或由二次函数中2yaxbcabc, , 的符号判断图象的位置,要数形结合;abc

10、 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 轴的一个交点坐标,可由对称性求出另一个交点坐标.x0抛物线与 轴有x二次三项式的值可正、 一元二次方程有两个不相等实根 与二次函数有关的还有二次三项式,二次三项式 本身就是所含字母2(0)axbc的二次函数;下面以 时为例,揭示二次函数、二次三项式和一元二次方程之间的x0a图像参考:y=x22y=2x2y=x2y=-2x2y= -x2y= -x22y=2x2-4y=2x2+2y=2x2两个交点 可零、可负0抛物线与 轴只x有一个交点二次三项式的值为非负 一元二次方程有两个相等的实数根抛物线与 轴无交点二次三项式的值恒为正 一元二次方程无实数根.y=2(x-4)2-3y=2(x-4)2y=2x2y=3(x+4)2y=3(x-2)2y=3x2y=-2(x+3)2y=-2(x-3)2y=-2x2十一、函数的应用1、已知以 为自变量的二次函数 的图像经过原点, 则 的x 2)2(mxy m值是: 2、已知一条抛物线经过(0,3),(4,6)两点,对称轴为 ,求这条抛物线的解析式。35

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。