ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:233KB ,
资源ID:3591367      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3591367.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(工程硕士研究生入学模拟试卷,数学(高等数学,线性代数).doc)为本站会员(da****u)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

工程硕士研究生入学模拟试卷,数学(高等数学,线性代数).doc

1、1工程硕士研究生入学模拟试卷,数学(高等数学,线性代数)2011.9考试时间为 180 分钟;试卷总分为 100 分一、 单项选择题(每小题 3 分, 共 18 分)1. 当 时,与 等价的无穷小量是 ( )0x20sinxtd(A) ; (B) ; (C) ; (D) .2(i)2ix2sinx31x2. 设函数 具有二阶连续导数,且 , ,则 ( )fx(0)f0()lm|xf(A) 为极大值; (B) 为极小值; (C) 为拐点;(D) 其它.(0)()f ,f3. 设区域 ,则二重积分 ( )2:1,0DxyxDyd(A)0; (B) ; (C) ; (D) .816144. 微分方程

2、 的特解形式为 ( )223xye(A) ; (B) ; (C) ;(D) .()xABe()AB2()xABexABe5. 设 为 阶对称矩阵, 为 阶反对称矩阵,下列矩阵为对称矩阵的是nn( )(A) ; (B) ; (C) ; (D) .6. 设 为 阶矩阵,秩 ,向量组 是线性方程组Amn()3rAn123,的基础解系,则下列向量组不是方程组 基础解系的是 ( ).0X 0AX(A) ; (B) ;1231,1231,(C) ; (D) 。12 123二、填空题 (每小题 3 分, 共 18 分)7. 设 ,则 _.1(1)()()24nxn 0limnx8. 若 ,则 _llnfdx

3、C f9. 设 , 且 ,则 。,3ababab10. 幂级数 的收敛区域为:_1()nx211. 设 为 阶可逆矩阵, 为 阶矩阵,满足: ,AnBn26BA则 _1()B12. 设三阶矩阵 的特征值为 , 为行列式 中元素 的代数3()ija2,34ij ija余子式,则 。12_A三、计算题(每小题 8 分,共 48 分)13. 求极限 20(sincos)(1)lmlxx14. 设 具有二阶连续偏导数,函数 ,求 , 。),(vuf (,)yzfxxzy215. 设 ( ) ,其中 是沿曲线23)(sin)kxCIeydxd 1,k1C从点 到点 的一段曲线, 是从点 到点 ,再21y

4、(,0, 2(,0)(2,)到点 的折线段,(1) 证明: ; (2) 求出上述积分。(,3)12I16. 考虑微分方程初值问题 ,30(),()ya(1) 求该问题的解;(2) 讨论当常数 取何值时, 。alim()0xy17. 求函数 的麦克劳林展开式。2()rctn1fx18. 已知非齐次线性方程组 的系数矩阵 的秩 ,3412145xxabA()2r求 值及方程组的通解。,ab四、证明题(本题 7 分) 19. 证明不等式: , 。22arctnl(1)xxR五、应用题 (本题 9 分)20. (1) 求曲线 在点 处的切线与 轴及该曲线所围成平面区域 的23yx(1,)xD面积;(2) 求上述区域 绕 轴旋转所得旋转体体积。D

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。