ImageVerifierCode 换一换
格式:PPT , 页数:66 ,大小:2.39MB ,
资源ID:3615474      下载积分:15 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3615474.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(概率论与数理统计数学期望与方差专项.ppt)为本站会员(99****p)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

概率论与数理统计数学期望与方差专项.ppt

1、关键词:数学期望方差协方差相关系数,第四章 随机变量的数字特征,问题的提出: 在一些实际问题中,我们需要了解随机变量的分布函数外,更关心的是随机变量的某些特征。例: 在评定某地区粮食产量的水平时,最关心的 是平均产量; 在检查一批棉花的质量时,既需要注意纤维的 平均长度,又需要注意纤维长度与平均长度的 偏离程度; 考察临沂市区居民的家庭收入情况,我们既知 家庭的年平均收入,又要研究贫富之间的差异 程度;,1 数学期望,例1:甲、乙两人射击比赛,各射击100次,其中甲、乙的成绩 如下: 评定他们的成绩好坏。,解:计算甲的平均成绩:,计算乙的平均成绩:,所以甲的成绩好于乙的成绩。,定义:定义:,数

2、学期望简称期望,又称均值。,例2:有2个相互独立工作的电子装置,它们的寿命服从同一指数分布,其概率密度为: 若将这2个电子装置串联联接组成整机,求整机寿命N(以小时计)的数学期望。 解:,问题:将2个电子装置并联联接组成整机, 整机的平均寿命又该如何计算?,根据N的概率密度fmin(x),可得到E(N).,例3:设有10个同种电子元件,其中2个废品。装配仪器 时,从这10个中任取1个,若是废品,扔掉后重取 1只,求在取到正品之前已取出的废品数X的期望。,解:X的分布律为:,例4:设一台机器一天内发生故障的概率为0.2,机器发生 故障时全天停工。若一周5个工作日里无故障,可获 利10万元;发生一

3、次故障获利5万元;发生2次故障 获利0元,发生3次或以上故障亏损2万元,求一周内 期望利润是多少?,解:设X表示一周5天内机器发生故障天数,,设Y表示一周内所获利润,则,例5:,例6:,10,几种重要分布的数学期望,例7:已知某零件的横截面是个圆,对横截面的直径X进 行测量,其值在区间(1,2)上均匀分布,求横截 面面积S的数学期望。,例8:,例9:设随机变量(X,Y)的概率密度为:,数学期望的特性:,这一性质可以推广到任意有限个随机变量线性组合的情况,证明:,下面仅对连续型随机变量给予证明:,19,20,21,定义:定义:,数学期望简称期望,又称均值。,22,2 方差,设有一批灯泡寿命为:一

4、半约950小时,另一半约1050小时平均寿命为1000小时; 另一批灯泡寿命为: 一半约1300小时,另一半约700小时平均寿命为1000小时;问题:哪批灯泡的质量更好?(质量更稳定),单从平均寿命这一指标无法判断,进一步考察灯泡寿命X与均值1000小时的偏离程度。,24,我们需要引进一个量来描述r.v.X的取值分散程度,即X的取值与E(X)的偏离程度,偏离的度量:,平均偏离:,绝对值(不好研究),25,定义 设X是一随机变量,,为标准差或均方差。,存在,则称之为X的方差。记为D(X)或Var(X),即,方差实际上是一个特殊的函数 g(X) =(X-E(X)2 的期望,对于离散型随机变量X,,

5、对于连续型随机变量X,,此外,利用数学期望的性质,可得方差得计算公式(常用):,例1:设随机变量X具有数学期望,例2:设随机变量X具有0-1分布,其分布律为: 解:,例3: 解:,例4:,解:X的概率密度为:,例5:设随机变量X服从指数分布,其概率密度为:,即对指数分布而言,方差是均值的平方,而均值恰为参数,方差的性质:,证明:,34,X与Y 相互独立:已知EX=3;DX=1;EY=2;DY=3 。 E(X-2Y);D(X-2Y) 。,解:由数学期望和方差的性质,例6:,例7: 解:,例8:设活塞的直径(以cm计) 汽缸的直径 X,Y相互独 立,任取一只活塞,任取一只汽缸,求活 塞能装入汽缸的

6、概率。,表1 几种常见分布的均值与方差,数学期望 方差,分布率或 密度函数,分布,40,几个与期望及方差有关的练习题,1、设X的数学期望E(X)=2,方差D(X)=4,则E(X2)= ;,2、设X B(n,p),已知E(X)=1.6 , D(X)=1.28,则 n= ; P= ;,3、设X P(),且P(X=1)=P(X=2),则E(X)= , D(X)= ;,3 协方差及相关系数,对于二维随机变量(X,Y),除了讨论X与Y的数学期望和方差外,还需讨论描述X与Y之间相互关系的数字特征。这就是本节的内容。 定义:,42,协方差的计算,证(2):,注: X,Y相互独立,协方差的性质:,44,证明4

7、):利用,45,例1、设(X,Y)的分布律为:,求COV(X,Y).,46,47,易知:,E(X)=P E(Y)=P,48,例2:设(X,Y)的概率密度为:,49,X,Y,1,1,D,0,50,51,相关系数的性质,线性关系,52,证明(1),53,54,相关系数的意义 相关系数是描述了X与Y线性相关程度,X,Y不相关(弱),X,Y相互独立(强),(没有线性关系),(没有任何关系),可能会有别的关系,如二次关系。,55,复习公式,56,实用的相关系数计算公式,例1:设X,Y服从同一分布,其分布律为: X -1 0 1 P 1/4 1/2 1/4 已知P(|X|=|Y| )=0,判断X和Y是否不相关?是否 不独立?,续,例 2,续,例3:设X,Y相互独立服从同一分布, 记U=X-Y,V=X+Y,则随机变量U与V是否一 定不相关,是否一定独立?,4 矩、协方差矩阵,显然,数学期望是一阶原点矩,方差是二阶中心矩,协方差是二阶混合中心矩。,65,n维正态变量具有以下四条重要性质:,66,课后思考题,1.,2.,3.,4.,5.,

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。