ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:460.26KB ,
资源ID:4230865      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4230865.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(抽象函数的奇偶性周期性对称性.doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

抽象函数的奇偶性周期性对称性.doc

1、抽象函数的周期性与对称性知识点梳理一、 抽象函数的对称性定理1. 若函数定义域为,且满足条件:,则函数的图象关于直线对称。推论1. 若函数定义域为,且满足条件:,则函数的图像关于直线对称。推论2. 若函数定义域为,且满足条件:),则函数的图像关于直线对称。总结:x的系数一个为1,一个为-1,相加除以2,可得对称轴方程推论3. 若函数定义域为,且满足条件:, 又若方程有个根,则此个根的和为。定理2. 若函数定义域为,且满足条件:(为常数),则函数的图象关于点对称。推论1. 若函数定义域为,且满足条件:成立,则 的图象关于点对称。推论2.若函数定义域为,且满足条件:(为常数),则函数的图象关于点对

2、称。总结:x的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。定理3.若函数 定义域为,则函数与两函数的图象关于直线对称(由可得)。推论1. 函数与函数的图象关于直线对称。推论2. 函数与函数的图象关于直线对称。定理4.若函数 定义域为,则函数与 的图象关于点对称。推论. 函数与函数图象关于点对称。二、抽象函数的周期性定理5.若函数 定义域为,且满足条件,则是以为周期的周期函数。推论1.若函数 定义域为,且满足条件,则是以为周期的周期函数。推论2.若函数满足条件 则是以为周期的周期函数。推论3. 若函数满足条件 则是以为周期的周期函数。定理7.若

3、函数的图象关于直线 与 对称,则是以为周期的周期函数。定理8.若函数的图象关于点与点 对称,则是以为周期的周期函数。定理9.若函数的图象关于直线与 点,则是以为周期的周期函数。总结:x的系数同为为1,具有周期性。1定义在R上的函数f(x)满足:f(x)f(x2)13,f(1)2,则f(99)()A13B2C. D.2已知奇函数f(x)在区间3,7上是增函数,且最小值为5,那么函数f(x)在区间7,3上()A是增函数且最小值为5B是增函数且最大值为5C是减函数且最小值为5D是减函数且最大值为53已知函数f(x1)是奇函数,f(x1)是偶函数,且f(0)2,则f(4)_.4对于定义在R上的函数f(

4、x),有下述四个命题,其中正确命题的序号为_若f(x)是奇函数,则f(x1)的图象关于点A(1,0)对称;若对xR,有f(x1)f(x1),则yf(x)的图象关于直线x1对称;若函数f(x1)的图象关于直线x1对称,则f(x)为偶函数;函数yf(1x)与函数yf(1x)的图象关于直线x1对称5已知定义域为R的函数f(x)是奇函数(1)求a、b的值;(2)若对任意的tR,不等式f(t22t)f(2t2k)0恒成立,求k的取值范围6设函数f(x)的定义域关于原点对称,且满足f(x1x2);存在正常数a,使f(a)1.求证:(1)f(x)是奇函数;(2)f(x)是周期函数,并且有一个周期为4a.1、

5、若函数对一切实数都有f (2x) = f (2x)则( )A.f (2)f (1) f(4)B.f (1)f (2) f(4)C.f (2)f (4) f(1)D.f (4)f (2) f(1)2、设函数y= f (x)定义在实数集R上,则函数y= f (x1)与y= f (1x)的图象关于( )对称。A.直线y=0B.直线 x=0C.直线 y=1D.直线 x=13、已知定义为R的函数满足,且函数在区间上单调递增.如果,且,则的值( )A. 恒小于0B.恒大于0C可能为0D可正可负4、函数yf(x)是定义在实数集R上的函数,那么yf(x4)与yf(6x)的图象之间(D )A关于直线x5对称B关

6、于直线x1对称C关于点(5,0)对称D关于点(1,0)对称5、设f(x)是定义在R上的函数,且满足f(10x)f(10x),f(20x)f(20x),则f(x)是( )A偶函数,又是周期函数B偶函数,但不是周期函数C奇函数,又是周期函数D奇函数,但不是周期函数6、已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是( )A.0B.C.1D. 7、已知,则( ).A.B. C. D.3 8、在数列则= 9、定义域为R,且对任意都有,若则= 10、已知f(x)是R上的偶函数,对都有f(x6)=f(x)f(3)成立,若f(1)=2,则f(2011)= 11、函数在R上有定义,且满足

7、是偶函数,且,是奇函数,则的值为 12、设f(x)是定义在R上的偶函数,且f(1+x)= f(1x),当1x0时,f (x) = x,则f (8.6 ) = _13、设是定义在区间上且以2为周期的函数,对,用表示区间已知当时,求在上的解析式.参考答案:1、若函数对一切实数都有f (2x) = f (2x)则( )A.f (2)f (1) f(4)B.f (1)f (2) f(4)C.f (2)f (4) f(1)D.f (4)f (2) f(1)答案:A。2、设函数y= f (x)定义在实数集R上,则函数y= f (x1)与y= f (1x)的图象关于( )对称。A.直线y=0B.直线 x=0

8、C.直线 y=1D.直线 x=1答案:D。由3、已知定义为R的函数满足,且函数在区间上单调递增.如果,且,则的值( )A. 恒小于0B.恒大于0C可能为0D可正可负答案A。分析:图象关于点对称.在区间上单调递增,在区间上也单调递增.我们可以把该函数想象成是奇函数向右平移了两个单位.,且函数在上单调递增,所以,又由,有,4、函数yf(x)是定义在实数集R上的函数,那么yf(x4)与yf(6x)的图象之间(D )A关于直线x5对称B关于直线x1对称C关于点(5,0)对称D关于点(1,0)对称答案:D。解:据复合函数的对称性知函数yf(x4)与yf(6x)之间关于点(64)/2,0)即(1,0)中心

9、对称,故选D。5、设f(x)是定义在R上的函数,且满足f(10x)f(10x),f(20x)f(20x),则f(x)是( )A偶函数,又是周期函数B偶函数,但不是周期函数C奇函数,又是周期函数D奇函数,但不是周期函数答案:C。6、定义在R上的非常数函数满足:f (10+x)为偶函数,且f (5x) = f (5+x),则f (x)一定是( )A.是偶函数,也是周期函数B.是偶函数,但不是周期函数 C.是奇函数,也是周期函数D.是奇函数,但不是周期函数答案:A.解:f (10+x)为偶函数,f (10+x) = f (10x).f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以

10、10为其一个周期的周期函数, x =0即y轴也是f (x)的对称轴,因此f (x)还是一个偶函数。7、已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是( )A.0B.C.1D. 答案:A。解析:令,则;令,则由得,构造函数,由,所以8、已知,则( ).A.B. C. D.3 答案:A。分析:由,知,.为迭代周期函数,故,.9、在数列则= 答案:。10、定义域为R,且对任意都有,若则=_答案:。11、已知f(x)是R上的偶函数,对都有f(x6)=f(x)f(3)成立,若f(1)=2,则f(2011)= 答案:2.12、函数在R上有定义,且满足是偶函数,且,是奇函数,则的值为 答案:0.函数关于和对称,周期为4。13、设f(x)是定义在R上的偶函数,且f(1+x)= f(1x),当1x0时,f (x) = x,则f (8.6 ) = _解:f(x)是定义在R上的偶函数x = 0是y = f(x)对称轴;又f(1+x)= f(1x) x = 1也是y = f (x) 对称轴。故y = f(x)是以2为周期的周期函数,f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (0.6 ) = 0.311、设是定义在区间上且以2为周期的函数,对,用表示区间已知当时,求在上的解析式.解:设时,有 是以2 为周期的函数,.6

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。