空间向量与立体几何典型例题一、选择题:1(2008全国卷理)已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于( C )AB CD1.解:C由题意知三棱锥为正四面体,设棱长为,则,棱柱的高(即点到底面的距离),故与底面所成角的正弦值为.另解:设为空间向量的一组基底,的两两间的夹角为长度均为,平面的法向量为,则与底面所成角的正弦值为.二、填空题:1(2008全国卷理)等边三角形与正方形有一公共边,二面角的余弦值为,分别是的中点,则所成角的余弦值等于 1题图(1)1.答案:.设,作,则,为二面角的平面角,结合等边三角形与正方形可知此四棱锥为正四棱锥,则,1题图(2)故所成角的余弦值另解:以为坐标原点,建立如图所示的直角坐标系,则点,则,故所成角的余弦值.三、解答题:1(2008安徽文)如图,在四棱锥中,底面四边长为1