温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6526757.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(第十二讲函数列与函数项级数(共8页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
第十二讲函数列与函数项级数 12 . 1 函数列与函数项级数的收敛与一致收敛一、函数列(一)函数列的收敛与一致收敛 1 逐点收敛函数列,若对,数列都收敛,则称函数列在区间 I 上逐点收敛,记 ,称为的极限函数简记为2 逐点收敛的定义对 ,及 , ,当 时,恒有3 一致收敛若函数列与函数都定义在区间 I 上,对 ,当 时,对一切恒有,则称函数列在区间 I 上一致收敛于记为 . 4 非一致收敛,对,及,使得 例 12 . 1 证明在逐点收敛,但不一致收敛证明:当时, ,当 时,即极限函数为但 非一致收敛,事实上,取。对,取 ,取 此时,即 5 一致收敛的柯西准则函数列在 I 上一致收敛对 ,当 n , m N 时,对一切,恒有6 非一致收敛的柯西准则函数列在 I 上非一致收敛,对,及,使得例12 . 2 用柯西准则证明:在上一致收敛; ( 2 )在上非一致收敛证明: ( 1 )对,取,当 时 对一切 有 即在上一致收敛 ( 2 )取,对
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。