温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6653643.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(基本不等式教案正式版(共5页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
基本不等式教案 教学目标:1.进一步掌握并运用基本不等式;2.会运用基本不等式求某些函数的最值,求最值时注意一正二定三相等。3.使学生能够运用基本不等式来讨论函数的最大值和最小值问题。教学重点与难点:重点:能灵活利用基本不等式及其变式解决有关求值问题;难点:等号成立的条件及解题中的转化技巧。一、复习回顾: 题目分析:除运用函数的单调性求解最值外,当时,可以利用基本不等式解题,引导出基本不等式。并强调基本不等式时三个条件“一正、二定、三相等。”1 基本不等式:如果,是正数,那么 变形公式: 解题分析:对于且积为定值,求和的最值时利用求其最小值。并加以总结:当积为定值时和有最小值。 解题分析:对于且和为定值,求积的最值时利用求其最大值。并加以总结:当和为定值时积有最大值。2.最值定理:已知都是正数, 如果积是定值,那么当时,和有最小值; 如果和是定值,那么当时,积有最大值说明:用基本不等式求最值的必须具备的三
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。