温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6697100.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(实变函数证明题大全(期末复习)8页.doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
1、设有限的可测函数,证明:存在定义在上的一列连续函数,使得于E。证明:因为 在上可测,由鲁津定理是,对任何正整数,存在的可测子集,使得, 同时存在定义在上的连续函数,使得当时,有所以对任意的,成立由此可得,因此即,由黎斯定理存在的子列,使得,于E2、设上的连续函数,为上的可测函数,则是可测函数。证明:记,由于在上连续,故对任意实数是直线上的开集,设,其中是其构成区间(可能是有限个,可能为可有为)因此因为在上可测,因此都可测。故可测。3、设是上的实值连续函数,则对于任意常数,是一开集,而总是一闭集。证明:若,因为是连续的,所以存在,使任意, 即任意是开集若且,由于连续,即,因此E是闭集。 4、(1)设求出集列的上限集和下限集证明:设,则存在N,使,因此时,即,所以属于下标比N大的一切偶指标集,从而属于无限多,得,又显然若有,则存在N,使任意,有,因此若时,此不可能,所以(2)可数点集的外测度为零。证明:证明:设对任意,存在开区间,使,且所以,且,由的任意性得5、设是E上的可测函数列,则其收敛点集与发散点集都是可测的。
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。