温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6749430.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(小熊的数值分析(共4页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
插值法的实际应用信科132 姓名 熊玉玮摘要:插值法是计算数学中的一种重要的方法,而且计算问题可以说是现代社会各个领域普遍存在的共同问题,无论哪一行哪一业都有许多数据需要处理,插值法正在科学技术中发挥越来越大的作用.关键字:插值 分段线性插值 三次样条插值 温度预测插值法是函数逼近的一种重要方法,是数值计算的基本课题.插值法是一个古老的话题,早在公元六世纪,刘焯就创立“等间距二次内插法公式”来计算日、月、五星的运行速度,之后,插值法就随着后来科学家的深入研究使之更加完善.插值法不仅是在算法上能够更加简便,而且在实际应用中,插值法会使很多问题由复杂变为简单从而方便解决.插值法的提出主要源于实际问题,在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是由观察与测试得到一些离散数值,因此需要用插值方法处理,求出近似函数.在插值问题的研究工作中,对用于逼近的简单函数的类型有不同的选取.多项式或分段多项式最便于计算和使用,因而使用的也比较多。特别计算机出现后,人们更把注意力集中在利用多项式的插值方面,因为计算公式
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。