温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6890114.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(欧式空间中线性变换和正交变换的关系(共5页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
欧氏空间中线性变换和正交变换的关系摘要 对欧式空间中的线性变换与正交变换之间的关系进行讨论关键词:欧式空间 线性变换 正交变换线性变换和正交变换是欧氏空间的两种重要变换。本文首先引入线性变换和正交变换在欧氏空间中的定义,然后讨论两者之间的关系。为了阅读方便,本文从最基本的概念谈起,即先定义线性空间、内积、欧氏空间、线性变换和正交变换。定义1 设不是空集,为一个数域,在中定义加法和数量乘法(简称数乘),若对,满足:(1),(关于加法封闭)(2),(交换律)(3),(结合律)(4),(零元)(5),(负元)(6)(关于数乘封闭)(7)(8)(9)(10)则称为数域上的线性空间。定义2 设是上的一个线性空间,在上定义了一个二元实函数,称为内积,记为,它具有以下性质():(1)(2)(3)(4),当且仅当时,。定义3 定义2中的线性空间就称为欧几里得空间,简称欧氏空间。定义4 设是一个线性空间,为一个数域,对于,有(1)(2)则称为上的线性变换。 定义5 设是欧氏空间V的一个
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。