温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-7259937.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(数列的极限(共8页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
数列的极限【知识概要】1. 数列极限的定义 1)数列的极限,在无限增大的变化过程中,如果数列中的项无限趋向于某个常数,那么称为数列的极限,记作. 换句话说,即:对于数列,如果存在一个常数,对于任意给定的,总存在自然数,当时,不等式恒成立,把叫做数列的极限,记为. 注: 理解数列极限的关键在于弄清什么是无限增大,什么是无限趋近; 有限项的数列不存在极限问题,只有无穷项数列才存在极限问题; 这里的常数是唯一的,每个无穷数列不一定都有极限,例如:; 研究一个数列的极限,关注的是数列后面无限项的问题,改变该数列前面任何有限多个项,都不能改变这个数列的极限; “无限趋近于”是指数列后面的项与的“距离”可以无限小到“零”. 例1 判断下列结论的正误 (1)若,则越来越小; (2)若,且不是常数数列,则无限接近,但总不能达到; (3)在数列中,如果对一切总有,则没有极限; (4)若,则. 解:(1)不正确,例如:, (2)不正确,例如:,. (3)不正确,例如:,但. (4)正确
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。