数列的极限【知识概要】1. 数列极限的定义 1)数列的极限,在无限增大的变化过程中,如果数列中的项无限趋向于某个常数,那么称为数列的极限,记作. 换句话说,即:对于数列,如果存在一个常数,对于任意给定的,总存在自然数,当时,不等式恒成立,把叫做数列的极限,记为. 注: 理解数列极限的关键在于弄清什么是无限增大,什么是无限趋近; 有限项的数列不存在极限问题,只有无穷项数列才存在极限问题; 这里的常数是唯一的,每个无穷数列不一定都有极限,例如:; 研究一个数列的极限,关注的是数列后面无限项的问题,改变该数列前面任何有限多个项,都不能改变这个数列的极限; “无限趋近于”是指数列后面的项与的“距离”可以无限小到“零”. 例1 判断下列结论的正误 (1)若,则越来越小; (2)若,且不是常数数列,则无限接近,但总不能达到; (3)在数列中,如果对一切总有,则没有极限; (4)若,则. 解:(1)不正确,例如:, (2)不正确,例如:,. (3)不正确,例如:,但. (4)正确