ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:29.21KB ,
资源ID:887542      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-887542.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高等数学第六版课后全部答案.docx)为本站会员(h****)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

高等数学第六版课后全部答案.docx

1、大学答案 - 中学答案 - 考研答案 - 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw 团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案() 习题 101 1. 设在 xOy 面内有一分布着质量的曲线弧 L, 在点(x, y)处它的线密度为(x, y), 用对弧长的曲线积分分别表达:(1) 这曲线弧对 x轴、对 y轴的转动惯量 Ix, Iy; (2)这曲线弧的重心坐标 x , y . 解 在曲线弧 L 上任取一长度很短的小弧段 ds(它的长度也记做 ds), 设

2、(x, y) 曲线 L 对于 x 轴和 y 轴的转动惯量元素分别为 dIx=y2(x, y)ds, dIy=x2(x, y)ds . 曲线 L 对于 x 轴和 y 轴的转动惯量分别为I x = y 2 ( x, y)ds , I y = x2 ( x, y)ds .L Lwww. kh dL L和 L2, 则2. 利用对弧长的曲线积分的定义证明: 如果曲线弧 L分为两段光滑曲线 L1L f (x, y)ds =Ln课x=M y L x ( x, y)ds M y (x, y)ds = , y= x = L . M M ( x, y)ds (x, y)ds后曲线 L 的重心坐标为1f ( x,

3、y)ds + f ( x, y)ds .L2证明 划分 L, 使得 L1和 L2的连接点永远作为一个分点, 则 f (i,i )si = f (i,i )si +i =1 i =1 n n1n1答dMx=y(x, y)ds, dMy=x(x, y)ds .令 =maxsi0, 上式两边同时取极限 0 0lim f (i ,i )si = lim f (i ,i )si + limi =1 i =1即得L f (x, y)ds =L1f ( x, y)ds + f ( x, y)ds .L23. 计算下列对弧长的曲线积分:awi = n1 +1曲线 L 对于 x 轴和 y 轴的静矩元素分别为案

4、f (i,i )si . f (i,i )si ,nn1 0.c oi = n1 +1为小弧段 ds 上任一点.网m(1) ( x2 + y 2 )n ds , 其中 L 为圆周 x=acos t , y=asin t (0t2);L解L (x2 + y2)n ds = 02 0 22(a 2 cos2 t + a 2 sin 2 t)n (a sin t)2 + (a cos t)2 dt= (a 2 cos2 t + a 2 sin 2 t)n (a sin t)2 + (a cos t)2 dt0L解 L 的方程为 y=1x (0x1);1www. kh d1 10课= x 1+(x2

5、)2 dx + x 1+ ( x)2 dx01后L xdx = L xdx + Lxdx12= x 1+ 4x 2 dx + 2 xdx = 1 (5 5 + 6 2 1) . 0 0 12x2 + y2 L(4) eds , 其中 L为圆周 x2+y2=a2, 直线 y=x及 x轴在第一象限内所围成的扇形的整个边界;解 L=L1+L2+L3, 其中L1: x=x, y=0(0xa),L2: x=a cos t, y=a sin t (0 t ) , 4 L3: x=x, y=x (0 x 2 a) , 2因而L ea 0x2 + y2ds = eL1x2 + y 2ds + eL2= e 1

6、 + 0 dx + x 2 24 ea 0(a sin t) + (a cos t) dt + 2 2awx2 + y2答解 L1: y=x2(0x1), L2: y=x(0x1) .案(3) xdx , 其中 L为由直线 y=x及抛物线 y=x2所围成的区域的整个边界;L网L (x + y)ds = 0 (x +1 x)11+(1 x)2 dx = ( x +1 x) 2dx = 2 .0ds + eL3= ea (2 + a) 2 . 4.c o1 x2 + y2(2) (x + y)ds , 其中 L 为连接(1, 0)及(0, 1)两点的直线段;ds ,02a 2 e 2x12 +12

7、 dxm= a 2n+1dt = 2a 2n+1 .(5) 1 ds , 其中 为曲线 x=etcos t , y=etsin t , z=et上相应于 t从 0 变到 2 2 x + y +z22 的这段弧; dy 解 ds = ( dx )2 + ( )2 + ( dz )2 dt dt dt dt = (et cos t et sin t)2 + (et sin t + et cos t)2 + e2t dt = 3et dt ,2 1 1 ds = 2t x2 + y2 + z 2 0 e cos2 t + e2t sin 2 t + e2t 3et dt解 =AB+BC+CD, 其中

8、AB: x=0, y=0, z=t (0t1), CD: x=1, y=t, z=2(0t3),www. kh d故 = 0dt + 0dt + 2t 02 +12 + 02 dt = 9 .0 0 0 1 3 3 x2 yzds = AB x2 yzds + BC x2 yzds + CD x2 yzds(7) y 2ds , 其中 L 为摆线的一拱 x=a(tsin t), y=a(1cos t)(0t2);L解L y 2ds = 02= 2a3 (1 cos t)2 1 cos t dt = 256 a3 . 0 15L(8) ( x2 + y 2 )ds , 其中 L 为曲线 x=a(

9、cos t+t sin t), y=a(sin tt cos t)(0t2). dy 解 ds = ( dx )2 + ( )2 dt = (at cos t)2 + (at sin t)2 dt = atdt dt dt课BC: x=t, y=0, z=2(0t3),2a 2 (1 cos t)2 a(t sin t)2 +a(cos t)2 dtL( x2 + y 2 )ds = a 2 (cos t + t sin t)2 + a 2 (sin t t cos t)2 atdt0后2答(0, 0, 2)、(1, 0, 2)、(1, 3, 2);aw案(6) x2 yzds , 其中 为折

10、线 ABCD, 这里 A、B、C、D 依次为点(0, 0, 0)、网=203 et dt = 3 et 2 = 3 (1 e 2 ) . 0 2 2 2.c om= a3(1+ t 2 )tdt = 2 2a3(1+ 2 2 ) .024. 求半径为 a, 中心角为 2 的均匀圆弧(线密度 =1)的重心. 解 建立坐标系如图 104 所示, 由对称性可知 y = 0 , 又L答(1) I z = ( x2 + y 2 ) (x, y, z)ds = ( x2 + y 2 )(x2 + y 2 + z 2 )dsL2www. kh dL L0课= a 2 (a 2 + k 2t 2 ) a 2

11、+ k 2 dt = 2 a 2 a 2 + k 2 (3a 2 + 4 2k 2 ) . 0 3 (2) M = (x, y, z)ds = (x2 + y 2 + z 2 )ds = (a 2 + k 2t 2 ) a 2 + k 2 dt= 2 a 2 + k 2 (3a 2 + 4 2k 2 ) , 32x= 1 ML x(x2 + y 2 + z 2)ds = M 06ak 2 , 3a 2 + 4 2k 2 1 2 y = 1 y( x 2 + y 2 + z 2 )ds = a sin t(a 2 + k 2t 2 ) a 2 + k 2 dt M 0 M L 2 = 6ak2

12、2 , 3a 2 + 4 k 1 2 z = 1 z( x 2 + y 2 + z 2 )ds = kt(a 2 + k 2t 2 ) a 2 + k 2 dt M 0 M L 2 2 2 3k (a + 2 k ) , = 3a 2 + 4 2k 2 3k (a 2 + 2 2k 2 ) 6 2 6 2 故重心坐标为 ( 2 ak 2 2 , 2 ak 2 2 , ). 3a + 4 k 3a + 4 k 3a 2 + 4 2k 2 =aw12后案解 ds = x2 (t) + y2 (t) + z2 (t)dt = a 2 + k 2 dt .网5. 设螺旋形弹簧一圈的方程为 x=acos

13、 t, y=asin t, z=kt, 其中 012, 它的线密度 (x, y, z)=x2+y2+z2, 求: (1)它关于 z轴的转动惯量 Iz; (2)它的重心., 0)a cost(a 2 + k 2t 2 ) a 2 + k 2 dt.c o所以圆弧的重心为 (a sin mx=Mx a sin = 1 xds = 1 a cos ad = , M 2a L 2a ww课 后 答 案 网w. kh d aw .c o m习题 102 1. 设 L 为 xOy 面内直线 x=a 上的一段, 证明: 证明 设 L是直线x=a上由(a, b1)到(a, b2)的一段, 则 L: x=a, y=t, t从 b1变到 b2. 于是L P(x, y)dx = 0 .证明 P( x, y)dx = P( x, 0)dx .L ab证明 L: x=x, y=0, t 从 a 变到 b, 所以b bL解 L: y=x2, x 从 0 变到 2, 所以www. kh d56 L (x2 y2)dx = 0 (x2 x4)dx = 15 .2(2) xydx , 其中 L为圆周(xa)2+y2=a2(a0)及 x轴所围成的在第L

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。