1、第 1 页 必修四期末测试题一、选择题:本大题共 14 小题,每小题 4 分,共 56 分在每小题给出的四个选项中,只有一项是符合要求的1sin 150的值等于 ( )A B C D22123232已知 (3,0),那么 等于( )AA2 B3 C4 D53在 0 到 2范围内,与角 终边相同的角是( )4A B C D6332344若 cos 0,sin 0,则角 的终边在( )A第一象限 B第二象限 C第三象限 D第四象限5sin 20cos 40cos 20sin 40的值等于( )A B C D412321436如图,在平行四边形 ABCD 中,下列结论中正确的是( )A B BCDA
2、DBC D AC07下列函数中,最小正周期为 的是( )Aycos 4x By sin 2x Cy sin Dycos 2x4x8已知向量 a(4,2),向量 b(x,5),且 ab,那么 x 等于( )A10 B5 C D1059若 tan 3 ,tan ,则 tan()等于( )3A3 B3 C D313110函数 y2cos x1 的最大值、最小值分别是( )A2,2 B1, 3 C1,1 D2,111已知ABC 三个顶点的坐标分别为 A(1,0),B(1,2),C(0,c),若 ,那么 c 的值是( ABC)A1 B1 C3 D3DBAC(第 6 题)第 2 页 12下列函数中,在区间
3、0, 上为减函数的是( )2Aycos x By sin x Cytan x Dysin(x )313已知 0A ,且 cos A ,那么 sin 2A 等于( )253A B C D25475125414设向量 a(m,n),b (s,t ),定义两个向量 a,b 之间的运算“ ”为 a b(ms,nt)若向量p(1,2),p q(3,4),则向量 q 等于( )A(3,2) B(3 ,2) C(2,3) D(3,2)二、填空题:本大题共 4 小题,每小题 4 分,共 16 分把答案填在题中横线上15已知角 的终边经过点 P(3,4),则 cos 的值为 16已知 tan 1,且 0,),那
4、么 的值等于 17已知向量 a(3,2),b(0,1),那么向量 3ba 的坐标是 18某地一天中 6 时至 14 时的温度变化曲线近似满足函数 TAsin (t)b(其中 ),62时至 14 时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天 6 时至 14时温差的最大值是 C;图中曲线对应的函数解析式是_三、解答题:本大题共 3 小题,共 28 分解答应写出文字说明,证明过程或演算步骤19(本小题满分 8 分)已知 0 ,sin (1)求 tan 的值; (2)求 cos 2sin 的值254 2 302010O t/hT/ 6 8 10 12 14(第 18 题)第
5、3 页 20(本小题满分 10 分)已知非零向量 a,b 满足|a|1,且(ab)(ab) 21(1)求|b|;(2)当 ab 时,求向量 a 与 b 的夹角 的值221(本小题满分 10 分)已知函数 f(x) sin x(0)(1)当 时,写出由 yf(x)的图象向右平移 个单位长度后得到的图象所对应的函数解析式;6(2)若 yf(x)图象过点( ,0),且在区间(0, )上是增函数,求 的值323第 4 页 期末测试题参考答案一、选择题: 1A解析:sin 150 sin 30 212B解析: 3A093C解析:在直角坐标系中作出 由其终边即知344D解析:由 cos 0 知,为第一、四
6、象限或 x 轴正方向上的角;由 sin 0 知,为第三、四象限或y 轴负方向上的角,所以 的终边在第四象限5B解析:sin 20cos 40 cos 20sin 40sin 60 236C解析:在平行四边形 ABCD 中,根据向量加法的平行四边形法则知 ADBC7B解析:由 T ,得 228D解析:因为 ab,所以2x4520,解得 x109D解析:tan( ) tan1t41310B解析:因为 cos x 的最大值和最小值分别是 1 和1,所以函数 y2cos x1 的最大值、最小值分别是 1和311D解析:易知 (2,2), (1,c2),由 ,得 2(1)2(c2)0,解得 c3ABCA
7、BC12A解析:画出函数的图象即知 A 正确第 5 页 13D解析:因为 0A ,所以 sin A ,sin 2A2sin Acos A 254cos12 25414A解析:设 q(x,y ),由运算“ ”的定义,知 p q(x,2y)(3,4),所以q(3,2)二、填空题: 15 5解析:因为 r5,所以 cos 5316 43解析:在0,)上,满足 tan 1 的角 只有 ,故 434317(3,5)解析:3ba(0,3)(3,2)(3,5)1820;y10sin( x )20,x6,1484解析:由图可知,这段时间的最大温差是 20C因为从 614 时的图象是函数 yAsin (x)b
8、的半个周期的图象,所以 A ()10,b (300)202121因为 146,所以 ,y10sin 208 8x将 x6,y10 代入上式,得 10sin 2010 ,即 sin 1, 8 43由于 ,可得 2综上,所求解析式为 y10sin 20,x6,1443 8三、解答题: 19解:(1)因为 0 ,sin , 故 cos ,所以 tan 255334(2)cos 2sin 12sin 2 cos 2820解:(1)因为(ab)(ab) ,即 a2b 2 ,11所以|b| 2|a| 2 1 ,故|b| 2第 6 页 (2)因为 cos ,故 ba 221解:(1)由已知,所求函数解析式为 f(x)sin 6(2)由 yf(x)的图象过 点,得 sin 0,所以 k, kZ0 33232即 k, kZ又0,所以 kN* 3当 k1 时, ,f(x )sin x,其周期为 ,2234此时 f(x)在 上是增函数;3 0当 k2 时,3,f(x )sin x 的周期为 ,324此时 f(x)在 上不是增函数 0所以, 23