温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-9208421.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(椭圆方程的有限元法简述(共5页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上椭圆方程的有限元法 有限元法是与差分法并驾齐驱的一套求解偏微分方程的方法。它的基本想法是,首先把微分方程转化成一种变分方程(微分积分方程),从而降低了对解的光滑性和边值条件的要求;然后,把求解区域划分成有限个单元(有限元),构造分片光滑函数,这个光滑函数由其在单元顶点上的函数值决定;最后,把这个分片光滑函数带入到上述微分积分方程中去,就得到关于单元顶点函数值的一个线性方程组,解之即得有限元解。与差分法相比,有限元法易于处理边界条件,易于利用分片高次多项式等等来提高逼近精度。 空间 作为例子,我们将考虑区间上的微分方程。用表示在上勒贝格平方可积函数的集合,表示本身以及直到阶的导数都属于的函数的集合。我们下面用到的主要是。这里所说的导数准确地说是应该是广义导数,对此我们不予详细说明,只需知道比如说,连续的分片线性函数(折线函数)就属于,其广义导数是分片常数函数。另外,我们还用到空间。(空间=函数集合。) 变分方程 考虑两点边值问题
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。