椭圆方程的有限元法简述(共5页).doc

上传人:晟*** 文档编号:9208421 上传时间:2021-12-06 格式:DOC 页数:6 大小:127.50KB
下载 相关 举报
椭圆方程的有限元法简述(共5页).doc_第1页
第1页 / 共6页
椭圆方程的有限元法简述(共5页).doc_第2页
第2页 / 共6页
椭圆方程的有限元法简述(共5页).doc_第3页
第3页 / 共6页
椭圆方程的有限元法简述(共5页).doc_第4页
第4页 / 共6页
椭圆方程的有限元法简述(共5页).doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

精选优质文档-倾情为你奉上椭圆方程的有限元法 有限元法是与差分法并驾齐驱的一套求解偏微分方程的方法。它的基本想法是,首先把微分方程转化成一种变分方程(微分积分方程),从而降低了对解的光滑性和边值条件的要求;然后,把求解区域划分成有限个单元(有限元),构造分片光滑函数,这个光滑函数由其在单元顶点上的函数值决定;最后,把这个分片光滑函数带入到上述微分积分方程中去,就得到关于单元顶点函数值的一个线性方程组,解之即得有限元解。与差分法相比,有限元法易于处理边界条件,易于利用分片高次多项式等等来提高逼近精度。 空间 作为例子,我们将考虑区间上的微分方程。用表示在上勒贝格平方可积函数的集合,表示本身以及直到阶的导数都属于的函数的集合。我们下面用到的主要是。这里所说的导数准确地说是应该是广义导数,对此我们不予详细说明,只需知道比如说,连续的分片线性函数(折线函数)就属于,其广义导数是分片常数函数。另外,我们还用到空间。(空间=函数集合。) 变分方程 考虑两点边值问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。