温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-9235950.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(高考数列易错点归纳(共12页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上数列1.数列的第n项与前n项的和的关系 ( 数列的前n项的和为).2.等差数列的通项公式;其前n项和公式为.3.等比数列的通项公式;其前n项的和公式为或.4.等比差数列:的通项公式为;其前n项和公式为.【易混易错】易错点1已知求时, 易忽略致错【例1】已知数列的前项和为n2n1,求的通项公式【错解】anSnSn1n2n1(n1)2(n1)1n,所以【错因】成立的条件是,当要单独验证【正解】当n1时,a1S112;当n2时,anSnSn1n2n1(n1)2(n1)1n.当n1时不符合上式,所以易错点2利用等比数列前n项和公式时,忽略公比致错【例2】求数列的前n项和【错解】由于, 两式相减得=.【错因】上述解法只适合的情形事实上,当时,【正解】易错点3忽略数列与函数的区别致错【例3】已知函数,数列满足(),且数列是单调递增数列,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。