精选优质文档-倾情为你奉上函数的奇偶性的归纳总结教学过程:一、知识要点:1、函数奇偶性的概念一般地,对于函数,如果对于函数定义域内任意一个,都有,那么函数就叫做偶函数。一般地,对于函数,如果对于函数定义域内任意一个,都有,那么函数就叫做奇函数。理解:(1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质;(2)定义域关于原点对称是函数具有奇偶性的必要条件。2、按奇偶性分类,函数可分为四类:奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数.3、奇偶函数的图象:奇函数图象关于原点成中心对称的函数,偶函数图象关于y轴对称的函数。4、函数奇偶性的性质:具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。常用的结论:若f(x)是奇函数,且x在0处有定义,则f(0)0。奇函数在关于原点对称的区间上若有单调性