精选优质文档-倾情为你奉上三角形的重心重心是三角形三边中线的交点,三线交一点可用证明,十分简单。 三角形重心已知:ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。 证明:根据燕尾定理,SAOB=SAOC,又SAOB=SBOC,SAOC=SBOC,再应用燕尾定理即得AF=BF,命题得证。 重心的几条性质: 1.重心到顶点的距离与重心到对边中点的距离之比为2:1。 2.重心和三角形3个顶点组成的3个三角形面积相等。 3.重心到三角形3个顶点距离的平方和最小。 4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为(X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3 5.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。 证明:刚才证明三线交一时已证。 6.重心是三角形内到三边距离之积最大的