1.1.3 导数的几何意义此处切线定义与以前学过的切线定义有什么不用?例1:(1)求函数y=3 x2在点处(1,3)的导数.(2)求曲线y= f( x)= x2+1在点P(1,2)处的切线方程.(1)求出函数在点x0处的变化率 ,得到曲线 在点(x0,f(x0)的切线的斜率。(2)根据直线方程的点斜式写出切线方程,即归纳:求切线方程的步骤 无限逼近的极限思想是建立导数概念、用导数定义求 函数的导数的基本思想,丢掉极限思想就无法理解导 数概念。函数在点 处的导数 、导函数 、导数 之间的区别与联系。1)函数在一点 处的导数 ,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数 3)函数在点 处的导数 就是导函数 在 处的函数值,这也是 求函数在点 处的导数的方法之一。
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。