苏教版八年级数学上册知识点详细全面精华.doc

上传人:h**** 文档编号:1045423 上传时间:2018-11-25 格式:DOC 页数:15 大小:230KB
下载 相关 举报
苏教版八年级数学上册知识点详细全面精华.doc_第1页
第1页 / 共15页
苏教版八年级数学上册知识点详细全面精华.doc_第2页
第2页 / 共15页
苏教版八年级数学上册知识点详细全面精华.doc_第3页
第3页 / 共15页
苏教版八年级数学上册知识点详细全面精华.doc_第4页
第4页 / 共15页
苏教版八年级数学上册知识点详细全面精华.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、1苏教版八年级数学上册知识点 第 1 章 全等三角形 一、全等三角形概念 : 能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。 一个三角形经过平移、翻折、旋转可以得到它的全等形。 2、全等三角形的表示全等用符号“” 表示,读作“ 全等于”。如ABCDEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形有哪些性质 (1):全等三角形的对应边相等、对应角相等。 (2

2、):全等三角形的周长相等、面积相等。 (3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。 4、学习全等三角形应注意以下几个问题: (1):要正确区分“对应边” 与“ 对边”,“对应角”与 “ 对角”的不同含义; (2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上; (3):“有三个角对应相等”或“ 有两边及其中一边的对角对应相等” 的两个三角形不一定全等; (4):时刻注意图形中的隐含条件,如 “公共角” 、“公共边” 、“对顶角” 5、全等三角形的判定 边边边:三边对应相等的两个三角形全等(可简写成“SSS” ) 边角边:两边和它们的夹角对应相等两个三角形全等(

3、可简写成“SAS” ) 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA” ) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS” ) 2直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边” 或“ HL”) 6、全等变换 只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180,这种变换叫做对称变换。 (3)旋

4、转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。5、证明两个三角形全等的基本思路:一般来讲,应根据题设并结合图形,先确定两个三角形已知相等的边或角,然后按照判定公理或定理,寻找并证明还缺少的条件.其基本思路是: ).有两边对应相等,找夹角对应相等,或第三边对应相等.前者利用SAS判定,后者利用SSS判定. ).有两角对应相等,找夹边对应相等,或任一等角的对边对应相等.前者利用ASA判定,后者利用AAS判定. ).有一边和该边的对角对应相等,找另一角对应相等.利用AAS判定.).有一边和该边的邻角对应相等,找夹等角的另一边对应相等,或另一角对应相等.前者利用SAS判定,后者

5、利用AAS判定. 二、角的平分线:1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线; 2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:平分线上的点;点到边的距离; 3、角平分线的判定定理:角的内部到角的两边的距离相等的点在角平分线上4、方法规律 (1)有角平分线,通常向角两边引垂线。 (2)证明点在角的平分线上,关键是要证明这个点到角两边的距离相等,即证明线段相等。常用方法有:使用全等三角形,角平分线的性质和利用面积相等,但特别要注意点到角两边的距离。 (3)注意:证题时可直接应用角平分线性质定理和判定定理,不必去找全等三角形。 3第 2 章 轴对称图形 一、轴对称图

6、形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。 2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点 3、轴对称图形和轴对称的区别与联系 区别:(1)轴对称是指两个图形间的位置关系,轴对称图形是指一个具有特殊形状的图形;(2)轴对称涉及两个图形,轴对称图形是对一个图形而言的联系:(1)定义中都有一条直线,都要沿着这条直线折叠重合;(2)如果把轴对称图形沿对称轴分成两部分(即

7、看成两个图形),那么这两个图形就关于这条直线成轴对称;反过来,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形 4.轴对称的性质 关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线 1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。 2.线段垂直平分线上的点与这条线段的两个端点的距离相等 43.与一条线段两个端点距离相等的点,在线段的

8、垂直平分线上 4.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等 三、画轴对称图形的步骤:1、点出关键点。找出所有的关键点,即图形中所有线段的端点。2、确定关键点到对称轴的距离。关键点离对称轴多远,对称点就离对称轴多远。3、点出对称点。4、连线。按照给出的一半图形将所有对称点连接成线段。5、轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合。 四、等腰三角形的性质 1、 有关定理及其推论 定理:等腰三角形有两边相等;定理:等腰三

9、角形的两个底角相等。 推论1:等腰三角形顶角的平分线平分底边且垂直于底边,也就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)。推论2:等边三角形的各角相等,且每一个角都等于60.等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; (二)等腰三角形的判定 1、 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边相等(等角对等边) 推论1、三个角都相等的三角形是等边三角形。 推论2、有一个角等于60的等腰三角形是等边三角形。 推论3、在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。 1.等腰三角形的性质 5.等腰三角形的

10、两个底角相等。(等边对等角) .等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)等腰三角形的其他性质: 等腰直角三角形的两个底角相等且等于45 等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。 等腰三角形的三边关系:设腰长为a,底边长为b,则 b/2 x2xa 是 x 的平方 x 的平方是 ax 是 a 的平方根 a 的平方根是 x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数 x 的平方等于 a,即,那么这个正数 x 叫做 a 的算术平方根a 的算术x2平方根记为 ,读作“根号 a”,a 叫做被开方数 a规定:0 的算术平方根是

11、 0.也就是,在等式 (x0)中,规定 。2 ax(2) 的结果有两种情况: 当 a 是完全平方数时, 是一个有限数;a当 a 不是一个完全平方数时, 是一个无限不循环小数。(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。(4)夹值法及估计一个(无理)数的大小(5) (x0) ax2 axa 是 x 的平方 x 的平方是 ax 是 a 的算术平方根 a 的算术平方根是 x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。9( 0) a 0a;注意 的双重非负性:a2 a- ( ax3xa 是 x 的立方 x 的立方是 ax 是 a 的立方根 a 的

12、立方根是 x(6) ,这说明三次根号内的负号可以移到根号外面。33三、实数 一、实数的概念及分类无理数:像前面的很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数。实数:有理数和无理数统称实数。1、实数的分类正有理数有理数 零 有限小数或无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数正实数10实数 0负实数整数包括正整数、零、负整数。零和正整数又叫自然数。正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如 等;32,7(2)有特定意义的数,如圆周率 ,或化简后含有

13、的数,如 +8 等;3(3)有特定结构的数,如 0.1010010001等;二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零) ,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。数 a 的相反数是a,这里 a 表示任意一个实数。2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|0。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,零的绝对值是 0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。4. 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。三、科学记数法和近似数 1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 参考答案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。