2017-2018人教版六年级数学上册知识点归纳.doc

上传人:h**** 文档编号:1045513 上传时间:2018-11-25 格式:DOC 页数:20 大小:143.50KB
下载 相关 举报
2017-2018人教版六年级数学上册知识点归纳.doc_第1页
第1页 / 共20页
2017-2018人教版六年级数学上册知识点归纳.doc_第2页
第2页 / 共20页
2017-2018人教版六年级数学上册知识点归纳.doc_第3页
第3页 / 共20页
2017-2018人教版六年级数学上册知识点归纳.doc_第4页
第4页 / 共20页
2017-2018人教版六年级数学上册知识点归纳.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、12017-2018 人教版六年级数学上册各知识点归纳第一单元分数乘法一、分数乘法(一) 分数乘法的意义:1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。例如:655 表示求 5 个 65 的和是多少? 1/35 表示求 5 个1/3 的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。 例如:1/34/7 表示求 1/3 的 4/7 是多少。43/8 表示求 4 的 3/8 是多少.(二) 、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数

2、进行乘法计算时,要先把带分数化成假分数再进行计算。3、为了计算简便,能约分的要先约分,再计算。 (尽量约分,不会约分的就不约,常考的质因数有1111=121;1313=169;1717=289;1919=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。2(三 )、 乘法中比较大小的规律一个数(0 除外) 乘大于 1 的数,积大于这个数。一个数(0 除外) 乘小于 1 的数(0 除外 ),积小于这个数。一个数(0 除外) 乘 1,积等于这个数。(四 )、分数混合运算的运算顺序和整数的运算 顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法

3、也同样适用。乘法交换律: a b = b a乘法结合律: ( a b )c = a ( b c )乘法分配律: ( a + b )c = a c + b c二、分数乘法的解决问题( 已知单位“1” 的量( 用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。2、找单位“1”: 单位“1” 在分率句中分率的前面;或在“占”、 “是”、 “比 ”“相当于”的后面。3、写数量关系式的技巧:(1)“的” 相当于 “” ,“占”、 “相当于”“ 是”、 “比” 是 “ = ” (2)分率

4、前是“ 的”字:用单位“1”的量分率=具体量 例如:甲数是 20,甲数的 1/3 是多少?列式是:201/34、看分率前有没有多或少的问题;分率前是“多或少” 的关系式: 3(比少):单位“1”的量(1-分率)=具体量;例如:甲数是 50,乙数比甲数少 1/2,乙数是多少?列式是:50(1-1/2 )(比多):单位“1”的量(1+分率)= 具体量 例如:小红有 30 元钱,小明比小红多 3/5,小红有多少钱?列式是:50(1+3/5 )3、求一个数的几倍是多少:用 一个数几倍; 4、求一个数的几分之几是多少: 用一个数几分之几。5、求几个几分之几是多少:用几分之几个数6、求已知一个部分量是总量

5、的几分之几,求另一个部分量的方法:(1)、单位“1” 的量(1-分率)=另一个部分量(建议用)(2)、单位“1” 的量- 已知占单位“1”的几分之几的部分量= 要求的部分量例如:教材 15 页做一做和 16 页练习第七题(题目中有时候会有这种题的关键字“其中” )第二单元位置与方向(二)1 确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)2 描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。43 位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。4 相对位置:东-西;

6、南-北;南偏东- 北偏西。第三单元分数除法三、倒数1、倒数的意义: 乘积是 1 的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是 1 的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数: 把小数化为分数,再求倒数。3、 1 的倒数是 1; 因为 11=1;0 没有倒数,因为 0 乘任何数都得 0,(分母不能为 0) X k B 1 . c o m 4、真分数的倒数大于 1;假分数

7、的倒数小于或等于 1;带分数的倒数小于 1。5、运用,a2/3=b1/4 求 a 和 b 是多少。把 a2/3=b1/4 看成等于 1,也就是求 2/3 的倒数和求 1/4 的倒数。51、分数除法的意义:乘法: 因数 因数 = 积 除法: 积 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。例如:1/23/5 意义是:已知两个因数的积是 1/2 与其中一个因数 3/5,求另一个因数的运算。2、分数除法的计算法则:除以一个不为 0 的数,等于乘这个数的倒数。3、分数除法比较大小时的规律:(1)当除数大于 1,商小于被除数;(2)当除数

8、小于 1(不等于 0),商大于被除数;(3)当除数等于 1,商等于被除数。“ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。二、分数除法解决问题1,解法:(1)方程: 根据数量关系式设未知量为 X,用方程解答。解:设未知量为 X (一定要解设),再列方程 用 X分率= 具体量 例如:公鸡有 20 只,是母鸡只数的 1/3,母鸡有多少只。 (单位一是母鸡只数,单位一未知.)解:设母鸡有 X 只。列方程为:X1/3=206(2)算术( 用除法) :单位“1”的量未知用除法:即已知单位“1”的几分之几是多少,求单位“1”的量。分率对应量对应分率 = 单

9、位“1”的量例如:公鸡有 20 只,是母鸡只数的 1/3,母鸡有多少只。 (单位一是母鸡只数,单位一未知, )用除法,列式是:201/32、看分率前有没有比多或比少的问题;分率前是“多或少” 的关系式: (比少):具体量 (1-分率)= 单位“1”的量;例如:桃树有 50 棵,比苹果树少 1/6,苹果树有多少棵。列式是:50(1-1/6)(比多):具体量 (1+分率)= 单位“1”的量例如:一种商品现在是 80 元,比原价增加了 1/7,原价多少?列式是:80(1+1/7)3、求一个数是另一个数的几分之几是多少: 用一个数除以另一个数,结果写为分数形式。例如:男生有 20 人,女生有 15 人

10、,女生人数占男生人数的几分之几。列式是:1520=15/20=3/4 4、求一个数比另一个数多几分之几的方法:X k B 1 . c o m用两个数的相差量单位“1” 的量 =分数即求一个数比另一个数多几分之几:用(大数小数) 另一个数(比那个数就除以那个数),结果写为分数形式。7例如:5 比 3 多几分之几?(53)3=2/3求一个数比另一个数少几分之几:用(大数小数) 另一个数(比那个数就除以那个数),结果写为分数形式。例如:3 比 5 少几分之几?(53)5=2/5说明:多几分之几不等于少几分之几,因为单位一不同。5 工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用 1效率

11、和,即 1(1/时间+1/时间), (工作效率=1/时间)例如:一项工程甲单独做要 5 天完成,乙单独做要 10 天完成,甲单独做要 3 天完成,三人合做几天可以完成?列式:1(1/5+1/10+1/3)第四单元比(一) 、比的意义 X k B 1 . c o m1、比的意义:两个数相除又叫做两个数的比。2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如 15 :10 = 1510=3/2(比值通常用分数表示,也可以用小数或整数表示)15 10 3/2前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。例:长是宽8的几

12、倍。也可以表示两个不同量的比,得到一个新量。例: 路程 速度=时间。4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。5、根据分数与除法的关系,两个数的比也可以写成分数形式。6、 比和除法、分数的联系:比 前 项 比号“:” 后 项 比值除 法 被除数 除号“” 除 数 商分 数 分 子 分数线“ ” 分 母 分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。8、根据比与除法、分数的关系,可以理解比的后项不能为 0。9、体育比赛中出现两队的分是 2:0 等,这只是一种记分的形式,不

13、表示两个数相除的关系。10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)例如:15 10 151015103/2(二 )、比的基本性质91、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0 除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0 除外) ,分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、根据比的基本性质,可以把比化成最简单的整数比。4.化简比:用求比值的方法。注意: 最后结果要写成比的形式。例如

14、: 1510 = 1510 =1510 3/2 = 32还可以 1510 = 1510 = 3/2 最简整数比是 325、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法,用分率解: 按比例分配通常把总量看作 单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。例如:有糖水 25 克,糖和水的比为 1:4,糖和水分别有几克?1+4=5 糖占 1/5 用 251/5 得到糖的数量,水占 4/5 用 10254/5 得到水的数量。2,用份

15、数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。例如:有糖水 25 克,糖和水的比为 1:4,糖和水分别有几克?糖和水的份数一共有 1+4=5 一份就是 255=5 糖有 1 份就是 51 水有 4 分就是 54第五单元圆的认识一、认识圆形1、圆的定义:圆是由曲线围成的一种平面图形。2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母 O 表示。它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母 r 表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母 d 表示。直径是一个圆内最长的线段。5、圆心确定圆的位置,半径确定圆的大小。6、在同一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的接近长方形。 长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。3、圆面积的计算方法:因为:长方形面积 = 长 宽

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 参考答案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。