反证法的一般步骤:与已知条件矛盾假设命题结论反面成立推理得出矛盾与定理,定义,公理矛盾假设不成立即所证命题成立解析:由C=90可知是直角三角形,根据勾股定理可知a2 +b2 c2 . 如图,在ABC中,AB=c,BC=a,AC=b,如果C=90,a、b、c三边有何关系?为什么?ACBab c一、复习引入探究:假设a2 +b2 c2,由勾股定理可知三角形ABC是直角三角形,且C=90,这与已知条件C90矛盾。假设不成立,从而说明原结论a2 +b2 c2成立。ACC 若将上面的条件改为“在ABC中,AB=c,BC=a,AC=b,C90”,请问结论a2 +b2 c2成立吗?请说明理由。ab c 这种证明方法与前面的证明方法不同,它是首先假设结论的反面成立,然后经过正确的;逻辑推理得出与已知、定理、公理矛盾的结论,从而得到原结论的正确。象这样的证明方法叫做反证法。问题:发现知识:二、探究本节要求必须掌握的两种反证题型:1.角度问题2平行问题三、应用新知在ABC中,ABAC,求证:B CAB C证明:假设,则()这与矛盾假设不成立B CABAC等角对等边已知ABACB C小结: 反证法的步骤:假