1、1绪论生化的任务 功 能 生 化动 态 生 化静 态 生 化静态生化是研究生物体基本物质的化学组成,结构,理化性质,生物学功能及结构与功能的关系.;动态生化是研究物质代谢的体内动态过程及在代谢过程中能量的转换和代谢调节规律;功能生化是研究代谢反应与生理功能的关系也是了解生命现象规律的重要环节之一. 静态生化 第一章 氨基酸和蛋白质一、组成蛋白质的 20 种氨基酸的分类三碱二酸三芳香、非极性氨基酸包括:色、脯、苯丙、蛋亮、亮、异亮、缬、丙、 、极性氨基酸极性中性氨基酸:酪、苏、丝、天冬酰胺、谷氨酰胺、半胱、甘酸性氨基酸:天冬、谷碱性氨基酸:赖、精、组 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、
2、苯丙氨酸 属于亚氨基酸的是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸二、氨基酸的理化性质、两性解离及等电点氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一 的溶液中,氨基酸解离成阳离子和PH阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的 称为PH该氨基酸的等电点。、氨基酸的紫外吸收性质芳香族氨基酸在 280nm 波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm 波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。、茚三酮反应 氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此
3、化合物最大吸收峰在 570nm 波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。2三、肽两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10 个以内氨基酸连接而成多肽称为寡肽;39 个氨基酸残基组成的促肾上腺皮质激素称为多肽;51 个氨基酸残基组成的胰岛素归为蛋白质。多肽连中的自由氨基末端称为端,自由羧基末端称为端,命名从端指向端。人体内存在许多具有生物活性的肽,重要的有:谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH 的
4、巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。四、蛋白质的分子结构、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。主要化学键:肽键,有些蛋白质还包含二硫键。、蛋白质的高级结构:包括二级、三级、四级结构。 )蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。二级结构以一级结构为基础,多为短距离效应。可分为:-螺旋:多肽链主链围绕中心轴呈有规律地螺旋式上升,顺时钟走向,即右手螺旋,每隔 3.6 个氨基酸残基上升一圈,螺距为 0.540nm。-螺旋的每个肽键的-和第
5、四个肽键的羧基氧形成氢键,氢键的方向与螺旋长轴基本平形。-折叠:多肽链充分伸展,各肽键平面折叠成锯齿状结构,侧链基团交错位于锯齿状结构上下方;它们之间靠链间肽键羧基上的氧和亚氨基上的氢形成氢键维系构象稳定-转角:常发生于肽链进行 180 度回折时的转角上,常有个氨基酸残基组成,第二个残基常为脯氨酸。无规线团:无确定规律性的那段肽链。主要化学键:氢键。)蛋白质的三级结构:指整条肽链中全部氨基酸残基的相对空间位置,显示为长距离效应。主要化学键:疏水键(最主要)、盐键、二硫键、氢键、范德华力。)蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子
6、含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子3中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。主要化学键:疏水键、氢键、离子键五、蛋白质结构与功能关系、蛋白质一级结构是空间构象和特定生物学功能的基础。一级结构相似的多肽或蛋白质,其空间构象以及功能也相似。尿素或盐酸胍可破坏次级键-巯基乙醇可破坏二硫键、蛋白质空间结构是蛋白质特有性质和功能的结构基础。肌红蛋白:只有三级结构的单链蛋白质,易与氧气结合,氧解离曲线呈直角双曲线。血红蛋白:具有个亚基组成的
7、四级结构,可结合分子氧。成人由两条 -肽链(141 个氨基酸残基)和两条 - 肽链(146 个氨基酸残基)组成。在氧分压较低时,与氧气结合较难,氧解离曲线呈状曲线。因为:第一个亚基与氧气结合以后,促进第二及第三个亚基与氧气的结合,当前三个亚基与氧气结合后,又大大促进第四个亚基与氧气结合,称正协同效应。结合氧后由紧张态变为松弛态。六、蛋白质的理化性质、蛋白质的两性电离:蛋白质两端的氨基和羧基及侧链中的某些基团,在一定的溶液条件下可解离成带负电荷或正电荷的基团。、蛋白质的沉淀:在适当条件下,蛋白质从溶液中析出的现象。包括:a.丙酮沉淀,破坏水化层。也可用乙醇。b.盐析,将硫酸铵、硫酸钠或氯化钠等加
8、入蛋白质溶液,破坏在水溶液中的稳定因素电荷而沉淀。、蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失。主要为二硫键和非共价键的破坏,不涉及一级结构的改变。变性后,其溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解。常见的导致变性的因素有:加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂、超声波、紫外线、震荡等。、蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在 280nm 处有特征性吸收峰,可用蛋白质定量测定。、蛋白质的呈色反应a.茚三酮反应:在 PH 5-7 时,蛋白质与茚三酮丙酮液加热可产
9、生蓝紫色.b.双缩脲反应:蛋白质和多肽分子中肽键在稀碱溶液中与硫酸酮共热,呈现紫色或红色。氨基酸不出现此反应。蛋白质水解加强,氨基酸浓度升4高,双缩脲呈色深度下降,可检测蛋白质水解程度。c.酚试剂反应在碱性条件下,蛋白质分子中的酪氨酸、色氨酸可与酚试剂(含磷钨酸-磷钼酸化合物)生成蓝色化合物.蓝色的强度与蛋白质的量成正比。七、蛋白质的分离和纯化(一)根据溶解度不同的分离纯化方法1.等电点沉淀 2.盐析沉淀 3.低温有机溶剂沉淀法4.温度对蛋白质溶解度的影响(二)根据分子大小不同的分离纯化方法1.透析和超滤 2.分子排阻层析 3.密度梯度层析(三)根据电离性质不同的分离纯化方法1.电泳法 2.离
10、子交换层析 3.大孔型离子交换树脂(四)根据配基特异性的分离纯化方法1.高度特异性 2.可逆性八、蛋白质的含量测定1.克氏定氮法 2.福林-酚试剂法 3.双缩脲法 4.紫外分光光度法 5.BCA 比色法6.Bradford 蛋白分析法九、多肽链中氨基酸序列分析a.分析纯化蛋白质的氨基酸残基组成(蛋白质水解为个别氨基酸,测各氨基酸的量及在蛋白质中的百分组成) 测定肽链头、尾的氨基酸残基二硝基氟苯法(DNP 法)头端 尾端 羧肽酶、法等丹酰氯法 水解肽链,分别分析胰凝乳蛋白酶(糜蛋白酶)法:水解芳香族氨基酸的羧基侧肽键胰蛋白酶法:水解赖氨酸、精氨酸的羧基侧肽键溴化脯法:水解蛋氨酸羧基侧的肽键Edm
11、an 降解法测定各肽段的氨基酸顺序(氨基末端氨基酸的游离 -氨基与异硫氰酸苯酯反应形成衍生物,用层析法鉴定氨基酸种类) 5b.通过核酸推演氨基酸序列。第二章 酶一、酶的组成单纯酶:仅由氨基酸残基构成的酶。结合酶:酶蛋白:决定反应的特异性;辅助因子:决定反应的种类与性质;可以为金属离子或小分子有机化合物。可分为辅酶:与酶蛋白结合疏松,可以用透析或超滤方法除去。辅基:与酶蛋白结合紧密,不能用透析或超滤方法除去。酶蛋白与辅助因子结合形成的复合物称为全酶,只有全酶才有催化作用。二、酶的活性中心酶的活性中心由酶作用的必需基团组成,这些必需基团在空间位置上接近组成特定的空间结构,能与底物特异地结合并将底物
12、转化为产物。对结合酶来说,辅助因子参与酶活性中心的组成。但有一些必需基团并不参加活性中心的组成。三、酶促反应的动力学酶促反应的速度取决于底物浓度、酶浓度、PH、温度、激动剂和抑制剂等。、底物浓度)在底物浓度较低时,反应速度随底物浓度的增加而上升,加大底物浓度,反应速度趋缓,底物浓度进一步增高,反应速度不再随底物浓度增大而加快,达最大反应速度,此时酶的活性中心被底物饱合。)米氏方程式V maxSKVa.米氏常数 K 值等于酶促反应速度为最大速度一半时的底物浓度。mb. K 值愈小,酶与底物的亲和力愈大。c. K 值是酶的特征性常数之一,只与酶的结构、酶所催化的底物和反应环境如温度、PH、离子强度
13、有关,与酶的浓度无关。d.V 是酶完全被底物饱和时的反应速度,与酶浓度呈正比。axm、酶浓度在酶促反应系统中,当底物浓度大大超过酶浓度,使酶被底物饱和时,反应速度与酶的浓度成正比关系。6、温度温度对酶促反应速度具有双重影响。升高温度一方面可加快酶促反应速度,同时也增加酶的变性。酶促反应最快时的环境温度称为酶促反应的最适温度。酶的活性虽然随温度的下降而降低,但低温一般不使酶破坏。酶的最适温度不是酶的特征性常数,它与反应进行的时间有关。、PH酶活性受其反应环境的 PH 影响,且不同的酶对 PH 有不同要求,酶活性最大的某一 PH 值为酶的最适 PH 值,如胃蛋白酶的最适 PH 约为 1.8,肝精氨
14、酸酶最适 PH 为 9.8,但多数酶的最适 PH 接近中性。最适 PH 不是酶的特征性常数,它受底物浓度、缓冲液的种类与浓度、以及酶的纯度等因素影响。、激活剂使酶由无活性或使酶活性增加的物质称为酶的激活剂,大多为金属离子,也有许多有机化合物激活剂。分为必需激活剂和非必需激活剂。、抑制剂凡能使酶的催化活性下降而不引起酶蛋白变性的物质统称为酶的抑制剂。大多与酶的活性中心内、外必需基团相结合,从而抑制酶的催化活性。可分为:)不可逆性抑制剂:以共价键与酶活性中心上的必需基团相结合,使酶失活。此种抑制剂不能用透析、超滤等方法去除。又可分为:a.专一性不可逆抑制剂:如农药敌百虫、敌敌畏等有机磷化合物能特异
15、地与胆碱酯酶活性中心丝氨酸残基的羟基结合,使酶失活,解磷定可解除有机磷化合物对羟基酶的抑制作用。b.非专一性不可逆抑制剂:如低浓度的重金属离子如汞离子、银离子可与酶分子的巯基结合,使酶失活,二巯基丙醇可解毒。化学毒气路易士气是一种含砷的化合物,能抑制体内的巯基酶而使人畜中毒。)可逆性抑制剂:通常以非共价键与酶和(或)酶底物复合物可逆性结合,使酶活性降低或消失。采用透析或超滤的方法可将抑制剂除去,使酶恢复活性。可分为:a.竞争性抑制剂:与底物竞争酶的活性中心,从而阻碍酶与底物结合形成中间产物。 特点:抑制剂与底物化学结构相似结合的是酶的同一部位抑制剂的作用强弱取决于酶与底物或抑制剂的相对亲和力
16、K V ;S mVmb.非竞争性抑制剂:与酶活性中心外的必需基团结合,不影响酶与底物的结合,酶和底物的结合也不影响与抑制剂的结合。特点:I、S 结构不同I、S 结合的是不同部位抑制程度取决于I和抑制剂与酶的亲和程度,与底物浓度无关 K 不变,V ;S ,VVmaxm7c.反竞争性抑制剂:仅与酶和底物形成的中间产物结合,使中间产物的量下降。特点:I 与ES结合 K 抑制程度和 I、S 成正比S m, VVaxm四、酶活性的调节、酶原的激活 有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定条件下,这些酶的前体水解一个或几个特定的肽键,致使构象发生改变,表现出酶的活性。酶原的激活实际上是酶
17、的活性中心形成或暴露的过程。生理意义是避免细胞产生的蛋白酶对细胞进行自身消化,并使酶在特定的部位环境中发挥作用,保证体内代谢正常进行。、变构酶体内一些代谢物可以与某些酶分子活性中心外的某一部位可逆地结合,使酶发生变构并改变其催化活性,有变构激活与变构抑制。、酶的共价修饰调节酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,这一过程称为酶的共价修饰。在共价修饰过程中,酶发生无活性与有活性两种形式的互变。酶的共价修饰包括磷酸化与脱磷酸化、乙酰化与脱乙酰化、甲基化与脱甲基化、腺苷化与脱腺苷化等,其中以磷酸化修饰最为常见。五、同工酶同工酶是指催化相同的化学反应,而酶蛋白的分子
18、结构、理化性质乃至免疫学性质不同的一组酶。同工酶是由不同基因或等位基因编码的多肽链,或由同一基因转录生成的不同 mRNA 翻译的不同多肽链组成的蛋白质。翻译后经修饰生成的多分子形式不在同工酶之列。同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中。第三章 维生素维生素是机体维持正常生理功能所必需,但在体内不能合成或合成量很少,必须由食物供给的一组低分子量有机物质.溶解性 CBKEDA、水 溶 性 维 生 素 、脂 溶 性 维 生 素 .一、脂溶性维生素、维生素 A又称抗干眼病维生素,又叫视黄醇.作用:与眼视觉有关,合成视紫红质的原料;维持上皮结构完整;促进生长发育;缺乏可引起
19、夜盲症、干眼病等。8、维生素 D又称抗佝偻病维生素.作用:调节钙磷代谢,促进钙磷吸收。缺乏:儿童引起佝偻病,成人引起软骨病。、维生素 E主要分为生育酚及生育三烯酚两大类.作用:体内最重要的抗氧化剂,保护生物膜的结构与功能;促进血红素代谢;临床上常用其治疗先兆流产及习惯性流产.、维生素 K又称为凝血维生素.作用:与肝脏合成凝血因子、有关.缺乏时可引起凝血时间延长,血块回缩不良。二、水溶性维生素、维生素 B1 被称为抗神经炎或脚气病的维生素,又名硫胺素,体内的活性型为焦磷酸硫胺素(TPP)TPP 是 -酮酸氧化脱羧酶和转酮醇酶的辅酶,并可抑制胆碱酯酶的活性,缺乏时可引起脚气病和(或)末梢神经炎。、
20、维生素 B2又名核黄素,体内的活性型为黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)FMN和 FAD 是体内氧化还原酶的辅基,缺乏时可引起口角炎、唇炎、阴囊炎、眼睑炎等症。、维生素 PP又名抗癞皮病因子,包括尼克酸及尼克酰胺,肝内能将色氨酸转变成维生素 PP,体内的活性型包括尼克酰胺腺嘌呤二核苷酸(NAD )和尼克酰胺腺嘌呤二核苷酸磷(NADP )NAD 和 NADP 在体内是多种不需氧脱氢酶的辅酶,缺乏时称为癞皮症,主要表现为皮炎、腹泻及痴呆。、维生素 B 6包括吡哆醇、吡哆醛及吡哆胺,体内活性型为磷酸吡哆醛和磷酸吡哆胺。磷酸吡哆醛是氨基酸代谢中的转氨酶及脱羧酶的辅酶,也是 -氨基 -
21、 酮戊酸(ALA)合成酶的辅酶。、泛酸 又称遍多酸,在体内的活性型为辅酶 A 及酰基载体蛋白(ACP )。、生物素生物素是体内多种羧化酶的辅酶,如丙酮酸羧化酶,参与二氧化碳的9羧化过程。、叶酸以四氢叶酸的形式参与一碳基团的转移,一碳单位在体内参加多种物质的合成,如嘌呤、胸腺嘧啶核苷酸等。叶酸缺乏时,DNA 合成受抑制,骨髓幼红细胞 DNA 合成减少,造成巨幼红细胞贫血。、维生素 B12又名钴胺素,唯一含金属元素的维生素。参与同型半工半胱氨酸甲基化生成蛋氨酸的反应,催化这一反应的蛋氨酸合成酶(又称甲基转移酶)的辅基是维生素 B ,它12参与甲基的转移。一方面不利于蛋氨酸的生成,同时也影响四氢叶酸
22、的再生,最终影响嘌呤、嘧啶的合成,而导致核酸合成障碍,产生巨幼红细胞性贫血。、维生素 C又称 L-抗坏血酸,促进胶原蛋白的合成;是催化胆固醇转变成 7- 羟胆固醇反应的 7- 羟化酶的辅酶;参与芳香族氨基酸的代谢;增加铁的吸收;参与体内氧化还原反应,保护巯基作用10、 硫 辛 酸.有抗脂肪肝和降低血胆固醇的作用.目前,尚未发现人类有硫硫 辛 酸辛酸的缺乏症.第四章 核酸的结构与功能一、核酸的分子组成:基本组成单位是核苷酸,而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。 两类核酸:脱氧核糖核酸(DNA),存在于细胞核和线粒体内。核糖核酸(RNA),存在于细胞质和细胞核内。、碱基:NH2NH2 O
23、 CH3 O O O O O NH2胞嘧啶 胸腺嘧啶 尿嘧啶 鸟嘌呤 腺嘌呤10嘌呤和嘧啶环中均含有共轭双键,因此对波长 260nm 左右的紫外光有较强吸收,这一重要的理化性质被用于对核酸、核苷酸、核苷及碱基进行定性定量分析。、戊糖:DNA 分子的核苷酸的 糖是 -D-2-脱氧核糖,RNA 中为-D- 核糖。、磷酸:生物体内多数核苷酸的磷酸基团位于核糖的第五位碳原子上。二、核酸的一级结构核苷酸在多肽链上的排列顺序为核酸的一级结构,核苷酸之间通过3,5磷酸二酯键连接。三、DNA 的空间结构与功能 、DNA 的二级结构DNA 双螺旋结构是核酸的二级结构。双螺旋的骨架由脱氧核糖和磷酸基构成,两股链之
24、间的碱基互补配对,是遗传信息传递者,DNA 半保留复制的基础,结构要点:a.DNA 是一反向平行的互补双链结构 亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,碱基之间以氢键相结合,其中,腺嘌呤始终与胸腺嘧啶配对,形成两个氢键,鸟嘌呤始终与胞嘧啶配对,形成三个氢键。b.DNA 是右手螺旋结构 螺旋直径为 2nm。每旋转一周包含了 10 个碱基,每个碱基的旋转角度为 36 度。螺距为 3.4nm,每个碱基平面之间的距离为 0.34nm。c.DNA 双螺旋结构稳定的维系 横向靠互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以后者为重要。、DNA 的三级结构三级结构是在双螺旋基础上进一步扭曲形成超螺旋,使体积压缩。在真核生物细胞核内,DNA 三级结构与一组组蛋白共同组成核小体。在核小体的基础上,DNA 链经反复折叠形成染色体。、功能 DNA 的基本功能就是作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。DNA 中的核糖和磷酸构成的分子骨架是没有差别的,不同区段的 DNA分子只是碱基的排列顺序不同。四、RNA 的空间结构与功能DNA 是遗传信息的载体,而遗传作用是由蛋白质功能来体现的,在两