1、武汉轻工大学毕 业 设 计(论 文)设计 (论文)题目:梁子湖三种鲌鱼年龄与生长的研究姓 名 石华龙 学 号 1307020075 院(系) 动物科学与营养工程学院 专 业 水产养殖 指导教师 刘军 2017 年 5 月 目录摘要 .1Abstract .21.前言 .31.1 梁子湖概况 .31.2 鲌鱼的研究现状 .41.3 鱼类年龄与生长的研究方法 .61.4 本研究的目的和意义 .82.材料和方法 .92.1 材料 .92.2 方法 .93.结果 .103.1 梁子湖三种鲌鱼年轮类型及特征 .103.2 梁子湖三种鲌鱼的年龄组成 .113.2 梁子湖三种鲌鱼全长与体重分布 .123.2
2、 三种鲌鱼的全长-体重关系 .133.3 梁子湖三种鲌鱼的生长方程 .143.3.1 蒙古鲌的生长方程 .143.3.2 翘嘴鲌的生长方程 .153.3.3 达氏鲌的生长方程 .153.4 梁子湖三种鲌鱼的全长和体重的生长曲线 .153.5 梁子湖三种鲌鱼的全长、体重生长速度、生长加速度 .164.讨论 .194.1 梁子湖三种鲌鱼生长的差异 .194.2 不同区域三种鲌鱼的生长比较 .204.3 梁子湖三种鲌鱼资源的合理利用 .225.小结 .23致 谢 .24参考文献 .251摘要:翘嘴鲌、达氏鲌、蒙古鲌三种鲌鱼是梁子湖渔获物中的重要组成部分。2016-2017 年利用在梁子湖采集的 73
3、 尾蒙古鲌标本、123 尾翘嘴鲌标本、58 尾达氏鲌标本,取鳞片鉴定年龄,研究了三种鲌鱼的生长情况。梁子湖三种鲌鱼中,蒙古鲌的全长(L: mm)与体重 (W:g)的关系方程为:W=0.1848L 2.1133,Von Bertalanffy 生长方程是 Lt=40.1711-e-1.94(t+0.27)、W t=453.161-e-1.94(t+0.27)2.1133,拐点年龄ti=0.12,拐点体重 Wi=353.7g,拐点全长 Li=213.2mm;翘嘴鲌的全长(L:mm)与体重(W : g)的关系方程为: W = 0.002L3.2897,Von Bertalanffy 生长方程是 Lt
4、=51.0631-e-0.84(t+0.6)、W t=832.121-e-0.84(t+0.6)3.2897,拐点年龄 ti=0.82,拐点体重 Wi=253.34g,拐点全长 Li=355.72mm;达氏鲌的全长(L:mm)与体重(W:g)的关系方程为:W = 0.0036L3.2049,Von Bertalanffy 生长方程是 Lt=101.651-e-0.15(t+2.97)、W t=9747.21-e-0.15(t+2.97)3.2049,拐点年龄 ti=4.8,拐点体重 Wi=367.22g,拐点全长 Li=365.43mm。关键词:蒙古鲌,翘嘴鲌,达氏鲌,梁子湖,年龄,生长2St
5、udy on Age and Growth of Three Species of Culterinae In Liangzi LakeAbstract:Culter mongolicus, Culter alburnus, and Culter dabryi are important components in the catch of Liangzi Lake. All specimens,169 C. mongolicus,232 C. alburnus, 79 C. dabryi were collected from Liangzi Lake in 2016-2017 The re
6、gression equation for standard length and body weight is: W = 0.1848L2.1133, W=0.002L3.2897,W = 0.0036L3.2049. Growths of four species of Culter Can be described with von Bertalanffy equations, namely standard length growth equation, body weight growth equation, body weight growth inflexion point, a
7、nd with the corresponding standard length and body weight:C. mongolicus: Lt = 40.171 1-e- 1.35 (t + 0.27), Wt = 453.16 1-e-1.94 (t + 0.27) 2.1133, inflection point 0.12 age, Wi=353.7g, Li=213.2mm. C. alburnus: Lt = 51.063 1-e-0.84 (t + 0.6), Wt=832.121-e-0.84(t+0.6)3.2897 the inflection point 0.82 a
8、ge, Wi=253.34g, Li=355.72mm. C. dabryi: Lt=101.651-e-0.15(t+2.97), Wt = 9747.2 1-e-0.15 (t + 2.97)3.2049, inflection point 4.8 age, Wi=367.22g, Li=365.43mmKey words: Culter mongolicus, Culter alburnus, Culter dabryi, Liangzi Lake, age, growth31.前言1.1 梁子湖概况1.1.1 梁子湖地理位置 梁子湖位于鄂州、咸宁和武汉江夏交界之处(1143119”-1
9、144252”E, 300455”-302026”N) 。梁子湖有牛山湖,张桥湖,山坡胡,月山湖等 38 个子湖,315 个湖汊。梁子湖周边共有 30 多条支流和河港汇入,在鄂州市长港樊口与长江联通。梁子湖东西约 83km,南北约 33km,面积约为 55.6 万亩,流域面积约3261km2,多年平均水深约 3m,贮水量 6.5108m3 左右,是湖北省蓄水量第一、面积仅次于洪湖的淡水湖,也是武汉城市圈的中心湖。梁子湖已被列为鄂东战略备用水源地,也是维护最好的亚洲湿地保护名录上的湿地保护区之一 1。图 1 调查采样水域示意图Fig. 1 Sampling site in the Liangzi
10、 Lake1.1.2 梁子湖生物资源概况梁子湖资料记载有 280 余种脊椎动物和 92 种水生高等植物。湖内生长着国家重点保护植物莼菜(Brasenia schreberi J.F.Gmel) 、水蕨(Ceratopteris thalictroides (L.) Brongn) 、野菱(Trapa incisa var. sieb)和野莲( Artemisia argyi H. Lv. 第二是可以准确测量那些不能直接获得钙化组织的鱼类,因为这种方法不需要钙化组织的分析,只通过全长就可以估计鱼的年龄大小。这种识别方法的也有缺点,因为鱼类生长较慢,会导致鱼类不同年龄的重复分布,而使估计年龄值不准
11、确。因此,在鉴定鱼龄时,其增长率也需要考虑到。(3)钙化组织分析法现在用作鱼类年龄鉴定的最普遍的方法,即是钙化组织分析法。常用的作为鱼类年龄鉴定的钙化组织材料有鳞片、耳石、匙骨、鳍骨和鳃盖骨片等。而其中,最常用的钙化组织分析材料是鳞片,因为其可以在不伤害鱼体的情况下取材,且鳞片本身易于脱落,采集方便,不用做特殊的处理就可以清晰地观察。但对于一些没有鳞片的鱼、鳞片上年轮数不能表示实际年龄的鱼类、或是一些副轮过多的高龄鱼。可以采用耳石或其他骨组织来鉴定年龄或作为鳞片鉴定的对照。钙化组织分析法的原理是:鱼类同其他变温动物一样存在生长的季候周期性。在春夏时节水温回升,食料生物繁茂,活动与代谢旺盛,摄食
12、强度大,生长快速且全面;而到秋冬时节水温下降,食料生物贫乏,活动与代谢变慢,摄食强度小,生长迟缓。到下一年春季则快速生长又重新恢复。鱼体在四季生长的不均衡性反映到鳞片上就是。在鱼体生长快速时,其生长所形成的环片就宽,环片之间的距离也较稀疏;而在鱼体生长缓慢时,环片之间的距离较紧密。宽带窄带交替生成就形成了年轮。通过观察鱼类的年轮数量即可鉴定其年龄。71.3.2 鱼类生长的测定当前,鱼类生长的一般测定方法,有直接法,年龄鉴定统计法和推算法这三种,并以长度和重量为单位。(一)直接法(1)饲养法用一段时间来饲养年龄与生物学指标已知的鱼后,测算其生长的指标,同时也可观察其年轮形成时间等情况。(2)野外
13、采集法主要对象是一些寿命较短的小型鱼类,对于这样的鱼类通常按月进行标本的采集,在标本中随机地采用其中的约 100 尾的标本来测定生物学指标。(3)标志放流法多用于大水面鱼类和有洄游生理习性的鱼类。由于这些鱼类较难饲养,一般在捕获后测知长、重,并取得鳞片,标记后放回,待重捕后,再次测量鱼的长、重,即可得到放回期间的生长数据。(二)年龄鉴定统计法测量某批渔获物的体长、体重,然后鉴定年龄,接着划分年龄组,统计该批渔获物不同龄组的实测体长和体重范围和均值。该方法结果更接近实际,但有一定的局限性(三)退算法根据鱼类的钙化组织的生长与生物学指标(主要是体长)的增长之间的对应关系,通过鳞径和轮径来退算鱼类在
14、过去任一年的生长常用体长(L)麟长(R)相关式如下:(1)Lea 正比例公式 :L/R=ln/rn;l n=(L/R)rn;(2)Rosa Lee 公式:(L-a)/R=(ln-a)rn;ln=a+(L-a)/Rrn式中:l n之前某一年的体长;L 和 R实测体长和鳞径;rn之前某一年的实测轮径。a截距1.3.3 根据已经取得的鱼体大小建立的方程(1)Ricker 方程Lt=et;W t=et式中:L tt 时的体长Wtt 时的体重;8L0 和 W0原初体长和体重; 和 生长系数,即瞬时生长率t=t t0(2)BrodyIt=aektIt=bce-kt式中:I tt 时的长度;a、b、 c以长
15、度量度的常数;k和 k分别决定长度增长量的系数。(3)瞬时生长率和体重相关方程g=k(1(W/W )g=k(lnWlnW)式中:W 渐进体重k常数。1.3.4Von Bertalanffy 方程dW/dt=as-dw式中,a、s 、d、w 分别为同化率、生理吸收表面积、异化率、总消耗率或体重;该方程的推导过程如下假设鱼体为等速生长,则 W=ql3,,S=pl 2 (q、 p 为常数, l 为全长),则:d(ql3) /dt=Apl2-Dql3dl/dt= (Apl2-Dql3)/3ql2= (Ap/3q) - (D/3)l这一线性微分方程的解为lt= (Ap/Dq)-(Ap/Dq-l0) e-(D/3)t当 t 无限增加时, l tAp/Dq,因此, Ap/Dq 为平均渐近长度 , D/3 为常数,简写作 k;因此 lt=L-(L-l0)e-kt 其变换式为;lt=L (1 -e-k(t-t0)由于等速生长, W t=alt3, W= aL3。所以:Wt= W(1-e-k(t-to)3式中:t通常以年龄表示;ltt 龄时的平均体长Wtt 龄时的平均体重;l和 W平均渐进全长和体重;k生长系数;A同化率;