机器学习的几何观点 - Home - LAMDA.ppt

上传人:da****u 文档编号:1176958 上传时间:2018-12-17 格式:PPT 页数:47 大小:3.01MB
下载 相关 举报
机器学习的几何观点 - Home - LAMDA.ppt_第1页
第1页 / 共47页
机器学习的几何观点 - Home - LAMDA.ppt_第2页
第2页 / 共47页
机器学习的几何观点 - Home - LAMDA.ppt_第3页
第3页 / 共47页
机器学习的几何观点 - Home - LAMDA.ppt_第4页
第4页 / 共47页
机器学习的几何观点 - Home - LAMDA.ppt_第5页
第5页 / 共47页
点击查看更多>>
资源描述

1、A Geometric Perspective on Machine Learning何晓飞浙江大学计算机学院1Machine Learning: the problemf 何晓飞Information(training data)f: X YX and Y are usually considered as a Euclidean spaces.2Manifold Learning: geometric perspectiveo The data space may not be a Euclidean space, but a nonlinear manifold. Euclidean d

2、istance. f is defined on Euclidean space. ambient dimension geodesic distance. f is defined on nonlinear manifold. manifold dimension.instead3Manifold Learning: the challenges The manifold is unknown! We have only samples!o How do we know M is a sphere or a torus, or else?o How to compute the distan

3、ce on M?o versusThis is unknown:This is what we have:? ? or else? TopologyGeometryFunctional analysis4Manifold Learning: current solutiono Find a Euclidean embedding, and then perform traditional learning algorithms in the Euclidean space.5Simplicity6Simplicity7Simplicity is relative8Manifold-based

4、Dimensionality Reductiono Given high dimensional data sampled from a low dimensional manifold, how to compute a faithful embedding? o How to find the mapping function ?o How to efficiently find the projective function ?9A Good Mapping Function o If xi and xj are close to each other, we hope f(xi) and f(xj) preserve the local structure (distance, similarity )o k-nearest neighbor graph:o Objective function:n Different algorithms have different concerns10

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 课件讲义

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。