数阵图(三)数阵问题是多种多样的,解题方法也是多种多样的,这就需要我们根据题目条件灵活解题。例1把20以内的质数分别填入下图的一个中,使得图中用箭头连接起来的四个数之和都相等。分析与解:由上图看出,三组数都包括左、右两端的数,所以每组数的中间两数之和必然相等。20以内共有2,3,5,7,11,13,17,19八个质数,两两之和相等的有5197171113,于是得到下图的填法。例2在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4。分析与解:如左下图所示,受列及对角线的限制,a处只能填1,从而b处填3;进而推知c处填4,d处填3,e处填4,右下图为填好后的数阵图。例3将18填入左下图的内,要求按照自然数顺序相邻的两个数不能填入有直线连接的相邻的两个内。分析与解:因为中间的两个各自只与一个不相邻,而27中的任何一个数都与两个数相邻,所以这两个内只能填1和8。2只能填在与1不相邻的内,7只能填在与8不相邻的内。其余数的填法见右上图。例4在