精选优质文档-倾情为你奉上北京历年高考数学圆锥曲线试题2005(本小题共14分)如图,直线l1:与直线l2:之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2. ()分别用不等式组表示W1和W2; ()若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,求点P的轨迹C的方程;()设不过原点O的直线l与()中的曲线C相交于M1,M2两点,且与l1,l2分别交于M3,M4两点. 求证OM1M2的重心与OM3M4的重心重合.l1l2xyO【答案】【详解】解:(I)(II)直线直线,由题意得即由知所以即所以动点P的轨迹方程为(III)当直线与轴垂直时,可设直线的方程为由于直线、曲线C关于轴对称,且与关于轴对称,于是的中点坐标都为,所以的重心坐标都为,即它们的重心重合.当直线与轴不垂直时,设直线的方程为由,得由直线与曲线C有两个不同交点,可知,且设的坐标分别为
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。