精选优质文档-倾情为你奉上集合、简易逻辑知识梳理:1、 集合:某些指定的对象集在一起就构成一个集合。集合中的每一个对象称为该集合的元素。元素与集合的关系:或集合的常用表示法: 列举法 、 描述法 。集合元素的特征: 确定性 、 互异性 、 无序性 。常用一些数集及其代号:非负整数集或自然数集N;正整数集,整数集Z;有理数集Q;实数集R2、子集:如果集合的任意一个元素都是集合的元素,那么集合称为集合的子集,记为3、真子集:如果,并且,那么集合成为集合的真子集,记为,读作“真包含于或真包含”,如:。注:空集是任何集合的子集。是非空集合的真子集结论:设集合A中有个元素,则A的子集个数为个,真子集个数为个4、补集:设,由中不属于的所有元素组成的集合称为的子集的补集,记为,读作“在中的补集”,即=。5、全集:如果集合包含我们所要研究的各个集合,这时可以看作一个全集。通常全集记作。6、交集:一般地,由所有属于集合且属于的元素构成的集合,称为与的交集,记作即:=。7、并集:一般地,由所有属于集合或属于的元素构成的集合,称为