二次函数中动点与特殊四边形综合问题解析与训练一、知识准备:抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊四边形,有以下常风的基本形式(1)抛物线上的点能否构成平行四边形(2)抛物线上的点能否构成矩形,菱形,正方形特殊四边形的性质与是解决这类问题的基础,而待定系数法,数形结合,分类讨论是解决这类问题的关键。二、例题精析【抛物线上的点能否构成平行四边形】例一、(2013河南)如图,抛物线y=x2+bx+c与直线y=x+2交于C,D两点,其27中点C在y轴上,点D的坐标为(3,2)。点P是y轴右侧的抛物线上一动点,过点P作2PE丄x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O,C,P,F为顶点的四边形是平行四边形?请说明理由。文案大全7D(运)【解答】(1)直线y=2x+2经过点C,C(0,2)2.抛物线y二一x2+bx+c经过点C(0,2),2=c7=3
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。