高等数学考研讲义第二章.doc

上传人:晟*** 文档编号:13391753 上传时间:2022-08-05 格式:DOC 页数:26 大小:2.54MB
下载 相关 举报
高等数学考研讲义第二章.doc_第1页
第1页 / 共26页
高等数学考研讲义第二章.doc_第2页
第2页 / 共26页
高等数学考研讲义第二章.doc_第3页
第3页 / 共26页
高等数学考研讲义第二章.doc_第4页
第4页 / 共26页
高等数学考研讲义第二章.doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

第二章 一元函数微分学2.1 导数与微分(甲)内容要点一、导数与微分概念1、导数的定义设函数在点的某领域内有定义,自变量在处有增量,相应地函数增量。如果极限存在,则称此极限值为函数在处的导数(也称微商),记作,或,等,并称函数在点处可导。如果上面的极限不存在,则称函数在点处不可导。导数定义的另一等价形式,令,则我们也引进单侧导数概念。右导数:左导数:则有在点处可导在点处左、右导数皆存在且相等。2导数的几何意义与物理意义如果函数在点处导数存在,则在几何上表示曲线在点()处的切线的斜率。切线方程:法线方程:设物体作直线运动时路程S与时间t的函数关系为,如果存在,则表示物体在时刻时的瞬时速度。3函数的可导性与连续性之间的关系如果函数在点处可导,则在点处一定连续,反之不然,即函数在点处连续,却不一定在点处可导。例如,在处连续,却不可导。4微分的定义设函数在点处有增量时,如果函数的增量有下面的表达式 ()其中为为无关,是时比高阶的无穷小,则称在处可微,并把中的主要

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。