(专题复习一)常用的数学思想和方法一、常用的数学思想(数学中的四大思想)1.函数与方程的思想用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:将所面临的问题转化为方程问题;解这个方程或讨论这个方程,得出相关的结论;将所得出的结论再返回到原问题中去。2数形结合思想在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形 ”在一定条件下可以相互转化、相互渗透。3分类讨论思想在数学中,我们常常需要根据研究对象性质的差异。分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略 ,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引