插值与曲线拟合实验报告.docx

上传人:晟*** 文档编号:13782416 上传时间:2022-08-31 格式:DOCX 页数:15 大小:302.88KB
下载 相关 举报
插值与曲线拟合实验报告.docx_第1页
第1页 / 共15页
插值与曲线拟合实验报告.docx_第2页
第2页 / 共15页
插值与曲线拟合实验报告.docx_第3页
第3页 / 共15页
插值与曲线拟合实验报告.docx_第4页
第4页 / 共15页
插值与曲线拟合实验报告.docx_第5页
第5页 / 共15页
点击查看更多>>
资源描述

数值计算方法插值与拟合实验报告摘要:通过实验介绍插值方法中常见的拉格朗日插值,线性分段插值和牛顿前插公式,分析计算各种方法的插值余项。在曲线拟合方面使用两种不同类型的曲线来拟合同一组数据,并计算残差向量范数,比较不同曲线拟合的效果,在此例上给出优劣的判断。关键词:拉格朗日插值;线性分段插值;牛顿前插公式;曲线拟合引言在工程和科学计算中经常碰到只知道离散的数据测量点而需要匹配其变量之间的数学函数表达式的情况,这就需要插值和拟合的数值方法来解决这些问题。插值法是在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点,也是离散函数逼近的重要方法,利用它可通过函数在有限点处的取值状况,估算出函数在其他点处的近似值。曲线拟合则是用连续曲线近似地刻画或比拟平面上离散点所表示的坐标之间的函数关系,在各个方面也有着愈加广泛的应用。1 算法介绍1.1 拉格朗日插值法1.1.1 算法理论对某个多项式函数,已知有给定的k+1个取值点:其中对应着自变量的位置,而对应着函数在这个位置的取值。假设任意两个不同的xj都互不相同,那么应用拉格朗日插值公

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。