第四节 多元复合函数的求导法则教学目的:使学生熟练掌握多元复合函数的求导法则;了解函数全微分形式不变性:。教学重点:复合函数的中间变量均为多元函数的求导法则教学过程:一、 复合函数的中间变量均为一元函数的情形 定理1 如果函数u=j(t)及v=y(t)都在点t可导, 函数z=f(u, v)在对应点(u, v)具有连续偏导数, 则复合函数z=fj(t), y(t)在点t可导, 且有 . 简要证明1: 因为z=f(u, v)具有连续的偏导数, 所以它是可微的, 即有 .又因为u=j(t)及v=y(t)都可导, 因而可微, 即有 , , 代入上式得 , 从而 . 简要证明2: 当t取得增量Dt时, u、v及z相应地也取得增量Du、Dv及Dz . 由z=f(u, v)、u=j(t)及v=y(t)的可微性, 有 , , 令Dt0, 上式两边取极限, 即得 .
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。