整体分析及总体刚度矩阵的性质整体分析 图示结构的网格共有四个单元和六个节点。在节点1、4、6共有四个支杆支承。结构的载荷已经转移为结点载荷。 整体分析的四个步骤:1、建立整体刚度矩阵;2、根据支承条件修改整体刚度矩阵;3、解方程组,求节点位移;4、根据节点位移求出应力。 单元分析得出单元刚度矩阵,下面,将各单元组合成结构,进行整体分析。整体分析 1、建立整体刚度矩阵(也叫作结构刚度矩阵) 上图中的结构有六个节点,共有12个节点位移分量和12个节点力分量。由结构的节点位移向量求结构的节点力向量时,转换关系为: 分块形式为: 其中子向量 和 都是二阶向量,子矩阵 是二行二列矩阵。整体刚度矩阵K是12*12阶矩阵。整体分析 2、根据支承条件修改整体刚度矩阵。 建立整体刚度矩阵时,每个节点的位移当作未知量看待,没有考虑具体的支承情况,因此进行整体分析时还要针对支承条件加以处理。 在上图的结构中,支承条件共有四个,即在节点1、4、6的四个支杆处相应位移已知为零: 建立节点平衡方程时,应根据上述边界条件进行处理。 3、解方程组,求出节点位移。 通常采用消元法和迭代法两种方法。 4、根据节点位移求出