1、三角形中的常用辅助线课程解读一、学习目标:归纳、掌握三角形中的常见辅助线二、重点、难点:1、全等三角形的常见辅助线的添加方法。2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析:全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有 SAS、ASA、AAS、SSS 和 HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。典型例题人说几何很困难,难点
2、就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。全等三角形辅助线 找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。三角形中常见辅助线的作法:延长中线构造全等三角形;利用翻折,构造全等三角形;引平行线构造全等三角形;作连线构造等腰三角形。常见辅助线的作法有以下几种:(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等
3、,构造全等三角形,利用的思维模式是全等变换中的“旋转”。例 2:如图,已知 ABC 中, AD 是BAC 的平分线,AD 又是 BC 边上的中线。求证:ABC 是等腰三角形。思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识。2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了 AD 又是 BC 边上的中线这一条件,而且要求证 AB=AC,可倍长 AD 得全等三角形,从而问题得证。解答过程:证明:延长 AD 到 E,使 DE=AD,连接 BE。又因为 AD 是 BC 边上的中线,BD=DC又BDE= CDABEDCA
4、D,故 EB=AC,E=2,AD 是BAC 的平分线1=2,1=E,AB=EB,从而 AB=AC,即 ABC 是等腰三角形。解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。(4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”例 4:如图,ABC 中,AB=AC,E 是 AB 上一点,F 是 AC 延长线上一点,连EF 交 BC 于 D,若 EB=CF。求证:DE=DF。思路分析:1)题意分析: 本题考查全等三角形常见辅助线的知识:作平行线。2)解题思路:因为 DE、DF 所在的两个三角形 DEB
5、与 DFC 不可能全等,又知EB=CF,所以需通过添加辅助线进行相等线段的等量代换:过 E 作 EG/CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。解答过程:证明:过 E 作 EG/AC 交 BC 于 G,则EGB=ACB,又 AB=AC,B=ACB,B=EGB,EGD=DCF,EB=EG=CF,EDB=CDF,DGEDCF,DE=DF。解题后的思考:此题的辅助线还可以有以下几种作法:例 5:ABC 中,BAC=60,C=40,AP 平分BAC 交 BC 于 P,BQ 平分ABC 交 AC 于 Q,求证:AB+BP=BQ+AQ。思路分析:1)题意分析:本题考查全等三角
6、形常见辅助线的知识:作平行线。2)解题思路:本题要证明的是 AB+BP=BQ+AQ。形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。可过 O 作BC 的平行线。得ADOAQO。得到 OD=OQ,AD=AQ,只要再证出 BD=OD 就可以了。解答过程:证明:如图(1),过 O 作 ODBC 交 AB 于 D,ADO=ABC=1806040=80,又AQO=C+QBC=80,ADO=AQO,又DAO=QAO,OA=AO,ADOAQO,OD=OQ,AD=AQ,又ODBP,PBO=DOB,又PBO=DBO,DBO=DOB,BD=OD,又BPA=C+PAC=70,BO
7、P=OBA+BAO=70,BOP=BPO,BP=OB,AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。 解题后的思考:(1)本题也可以在 AB 上截取 AD=AQ,连 OD,构造全等三角形,即“截长法”。(2)本题利用“平行法”的解法也较多,举例如下:如图(2),过 O 作 ODBC 交 AC 于 D,则ADOABO 从而得以解决。如图(5),过 P 作 PDBQ 交 AC 于 D,则ABPADP 从而得以解决。小结:通过一题的多种辅助线添加方法,体会添加辅助线的目的在于构造全等三角形。而不同的添加方法实际是从不同途径来实现线段的转移的,体会构造的全等三角形在转移线段中的作用。从变
8、换的观点可以看到,不论是作平行线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构造了全等三角形。(5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。例 6:如图甲, AD BC,点 E 在线段 AB 上, ADE= CDE, DCE= ECB。求证: CD=AD+BC。思路分析:1)题意分析: 本题考查全等三角形常见辅助线的知识:截长法或补短法。2)解题思路:结论是 CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD
9、 上截取 CF=CB,只要再证 DF=DA 即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。解答过程:证明:在 CD 上截取 CF=BC,如图乙 FCE BCE( SAS),2=1。又 AD BC, ADC+ BCD=180, DCE+ CDE=90,2+3=90,1+4=90,3=4。在 FDE 与 ADE 中, FDE ADE( ASA), DF=DA, CD=DF+CF, CD=AD+BC。解题后的思考:遇到求证一条线段等于另两条线段之和时,一般方法是截长法或补短法:截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条短线段延长,延长部分等于
10、另一条短线段,然后证明新线段等于长线段。1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。小结:三角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角形。三角形中两中点,连接则成中位线
11、。三角形中有中线,延长中线等中线。预习导学下一讲我们就要进入八下的学习了,八下的第一章是分式。请同学们预习课本,并思考以下问题。1、分式的概念是什么?2、分式的乘除法的运算法则是什么?同步练习(答题时间:90 分钟)这几道题一定要认真思考啊,都是要添加辅助线的,开动脑筋好好想一想吧!加油!你一定行!1、已知,如图 1,在四边形 ABCD 中, BC AB, AD=DC, BD 平分 ABC。求证: BAD+ BCD=180。2、已知,如图 2,1=2, P 为 BN 上一点,且 PD BC 于点D, AB+BC=2BD。求证: BAP+ BCP=180。3、已知,如图 3,在 ABC 中, C
12、2 B,12。求证: AB=AC+CD。试题答案1、分析:因为平角等于 180,因而应考虑把两个不在一起的角通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长法或补短法”来实现。证明:过点 D 作 DE 垂直 BA 的延长线于点 E,作 DF BC 于点 F,如图 1-2 Rt ADE Rt CDF(HL), DAE= DCF。又 BAD+ DAE=180, BAD+ DCF=180,即 BAD+ BCD=1802、分析:与 1 相类似,证两个角的和是 180,可把它们移到一起,让它们成为邻补角,即证明 BCP= EAP,因而此题适用“补短”进行全等三角形的构造。证明:过点 P 作 PE 垂直 BA 的延长线于点 E,如图 2-2